Orthogonal Ribosome–tRNAs Pair by Engineering of Peptidyl Transferase Center

  • Naohiro TerasakaEmail author
Part of the Springer Theses book series (Springer Theses)


The CCA-3′ sequence of tRNA is conserved among all organisms and is important for aminoacylation and translation. In bacteria, the CCA-3′ end makes Watson–Crick base pairs with bases of 23S rRNA in the peptidyl transferase center (PTC) in the classical state (Voorhees et al. in Nat Struct Mol Biol 16:528–533, 2009) and translocation (Dorner et al. in Nat Struct Mol Biol 13:234–241, 2006) during translation. These base pairs are important for translation activity, and the compensatory mutations in these base pairs are tolerated during peptidyl transfer reaction (Kim and Green in Molecular Cell 4(5):859–864, 1999) and translocation (Dorner et al. in Nat Struct Mol Biol 13:234–241, 2006). However, it is yet empirically unknown whether such mutations accommodates translation in its entirety. I will report development of orthogonal translation machinery (Terasaka et al. in Nat Chem Biol 10(7):555–557, 2014). First, I developed a method to easily aminoacylate various amino acids onto tRNAs bearing mutation (or mutations) in CCA-3′ end using compensatory mutated flexizymes. Then the translation activity of the PTC-mutated ribosomes and tRNAs were measured. Consequently, I developed the mutant ribosome–tRNA pair which had comparable translation activity and orthogonality to the wild-type ribosome–tRNA pair. Finally, two different peptides were expressed simultaneously in one pot from a single mRNA template using the mutant and wild-type ribosome–tRNA pairs.


tRNA Ribosome Translation Peptide Synthetic biology 


  1. Bashan A, Agmon I, Zarivach R, Schluenzen F, Harms J, Berisio R, Bartels H, Franceschi F, Auerbach T, Hansen HA, Kossoy E, Kessler M, Yonath A (2003) Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol Cell 11(1):91–102. doi: 10.1016/S1097-2765(03)00009-1 CrossRefGoogle Scholar
  2. Cavarelli J, Moras D (1993) Recognition of tRNAs by aminoacyl-tRNA synthetases. FASEB J 7(1):79–86Google Scholar
  3. Cornish PV, Ermolenko DN, Noller HF, Ha T (2008) Spontaneous intersubunit rotation in single ribosomes. Mol Cell 30(5):578–588. doi: 10.1016/j.molcel.2008.05.004 CrossRefGoogle Scholar
  4. Doi Y, Ohtsuki T, Shimizu Y, Ueda T, Sisido M (2007) Elongation factor Tu mutants expand amino acid tolerance of protein biosynthesis system. J Am Chem Soc 129(46):14458–14462. doi: 10.1021/ja075557u
  5. Dorner S, Brunelle J, Sharma D, Green R (2006) The hybrid state of tRNA binding is an authentic translation elongation intermediate. Nat Struct Mol Biol 13(3):234–241. doi: 10.1038/nsmb1060 CrossRefGoogle Scholar
  6. Forster A, Tan Z, Nalam M, Lin H, Qu H, Cornish V, Blacklow S (2003) Programming peptidomimetic syntheses by translating genetic codes designed de novo. Proc Natl Acad Sci USA 100(11):6353–6357. doi: 10.1073/pnas.1132122100 CrossRefGoogle Scholar
  7. Goto Y, Katoh T, Suga H (2011) Flexizymes for genetic code reprogramming. Nat Protoc 6(6):779–790. doi: 10.1038/nprot.2011.331 CrossRefGoogle Scholar
  8. Goto Y, Murakami H, Suga H (2008) Initiating translation with d-amino acids. RNA 14(7):1390–1398. doi: 10.1261/rna.1020708 CrossRefGoogle Scholar
  9. Green R, Switzer C, Noller HF (1998) Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA. Science 280(5361):286–289. doi: 10.1126/science.280.5361.286 CrossRefGoogle Scholar
  10. Kang T, Suga H (2011) Translation of a histone H3 tail as a model system for studying peptidyl-tRNA drop-off. FEBS Lett 585(14):2269–2274. doi: 10.1016/j.febslet.2011.05.051 CrossRefGoogle Scholar
  11. Kao C, Zheng M, Rüdisser S (1999) A simple and efficient method to reduce nontemplated nucleotide addition at the 3′ terminus of RNAs transcribed by T7 RNA polymerase. RNA 5(9):1268–1272. doi: 10.1017/S1355838299991033 CrossRefGoogle Scholar
  12. Kawakami T, Murakami H, Suga H (2008) Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides. Chem Biol 15(1):32–42. doi: 10.1016/j.chembiol.2007.12.008 CrossRefGoogle Scholar
  13. Kawakami T, Ohta A, Ohuchi M, Ashigai H, Murakami H, Suga H (2009) Diverse backbone-cyclized peptides via codon reprogramming. Nat Chem Biol 5(12):888–890. doi: 10.1038/nchembio.259 CrossRefGoogle Scholar
  14. Kim DF, Green R (1999) Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol Cell 4(5):859–864. doi: 10.1016/S1097-2765(00)80395-0 CrossRefGoogle Scholar
  15. Lescoute A, Westhof E (2006) The interaction networks of structured RNAs. Nucleic Acids Res 34(22):6587–6604. doi: 10.1093/nar/gkl963 CrossRefGoogle Scholar
  16. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444. doi: 10.1146/annurev.biochem.052308.105824 CrossRefGoogle Scholar
  17. Liu J, Liu M, Horowitz J (1998) Recognition of the universally conserved 3′-CCA end of tRNA by elongation factor EF-Tu. RNA 4(6):639–646. doi: 10.1017/S1355838298980013 CrossRefGoogle Scholar
  18. Liu M, Horowitz J (1994) Functional transfer RNAs with modifications in the 3′-CCA end: differential effects on aminoacylation and polypeptide synthesis. Proc Natl Acad Sci U S A 91(22):10389–10393. doi: 10.2307/2366033 CrossRefGoogle Scholar
  19. Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, Helm M, Bujnicki JM, Grosjean H (2013) MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res 41(Database issue):D262–267. doi: 10.1093/nar/gks1007
  20. Magliery TJ, Anderson JC, Schultz PG (2001) Expanding the genetic code: Selection of efficient suppressors of four-base codons and identification of “shifty” four-base codons with a library approach in Escherichia coli. J Mol Biol 307(3):755–769. doi: 10.1006/jmbi.2001.4518 CrossRefGoogle Scholar
  21. Moazed D, Noller HF (1989) Intermediate states in the movement of transfer-RNA in the ribosome. Nature 342(6246):142–148. doi: 10.1038/342142a0 CrossRefGoogle Scholar
  22. Moazed D, Noller HF (1991) Sites of interaction of the CCA end of peptidyl-tRNA with 23S rRNA. Proc Natl Acad Sci USA 88(9):3725–3728. doi: 10.1073/pnas.88.9.3725 CrossRefGoogle Scholar
  23. Mukai T, Kobayashi T, Hino N, Yanagisawa T, Sakamoto K, Yokoyama S (2008) Adding l-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases. Biochem Biophys Res Commun 371(4):818–822. doi: 10.1016/j.bbrc.2008.04.164 CrossRefGoogle Scholar
  24. Murakami H, Ohta A, Ashigai H, Suga H (2006) A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat Methods 3(5):357–359. doi: 10.1038/nmeth877 CrossRefGoogle Scholar
  25. Neumann H, Peak-Chew SY, Chin JW (2008) Genetically encoding N(ε)-acetyllysine in recombinant proteins. Nat Chem Biol 4(4):232–234. doi: 10.1038/nchembio.73 CrossRefGoogle Scholar
  26. Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW (2010) Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464(7287):441–444. doi: 10.1038/nature08817 CrossRefGoogle Scholar
  27. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289(5481):920–930. doi: 10.1126/science.289.5481.920 CrossRefGoogle Scholar
  28. Polikanov YS, Steitz TA, Innis CA (2014) A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat Struct Mol Biol 21(9):787–793. doi: 10.1038/Nsmb.2871 CrossRefGoogle Scholar
  29. Polycarpo CR, Herring S, Berube A, Wood JL, Soll D, Ambrogelly A (2006) Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase. FEBS Lett 580(28–29):6695–6700. doi: 10.1016/j.febslet.2006.11.028 CrossRefGoogle Scholar
  30. Rackham O, Chin JW (2005) A network of orthogonal ribosome ∙ mRNA pairs. Nat Chem Biol 1(3):159–166. doi: 10.1038/Nchembio719 CrossRefGoogle Scholar
  31. Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A, Podjarny A, Rees B, Thierry JC, Moras D (1991) Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science 252(5013):1682–1689. doi: 10.1126/science.2047877 CrossRefGoogle Scholar
  32. Saito H, Kourouklis D, Suga H (2001a) An in vitro evolved precursor tRNA with aminoacylation activity. EMBO J 20(7):1797–1806. doi: 10.1093/emboj/20.7.1797 CrossRefGoogle Scholar
  33. Saito H, Watanabe K, Suga H (2001b) Concurrent molecular recognition of the amino acid and tRNA by a ribozyme. RNA 7(12):1867–1878Google Scholar
  34. Sako Y, Morimoto J, Murakami H, Suga H (2008) Ribosomal synthesis of bicyclic peptides via two orthogonal inter-side-chain reactions. J Am Chem Soc 130(23):7232–7234. doi: 10.1021/ja800953c CrossRefGoogle Scholar
  35. Samaha RR, Green R, Noller HF (1995) A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 377(6547):309–314. doi: 10.1038/377309a0 CrossRefGoogle Scholar
  36. Schmeing TM, Ramakrishnan V (2009) What recent ribosome structures have revealed about the mechanism of translation. Nature 461(7268):1234–1242. doi: 10.1038/Nature08403 CrossRefGoogle Scholar
  37. Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FV, Weir JR, Ramakrishnan V (2009) The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326(5953):688–694. doi: 10.1126/science.1179700 CrossRefGoogle Scholar
  38. Schulman LH, Pelka H (1977) Structural requirements for aminoacylation of Escherichia coli formylmethionine transfer RNA. Biochemistry 16(19):4256–4265. doi: 10.1021/bi00638a020 CrossRefGoogle Scholar
  39. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19(8):751–755. doi: 10.1038/90802 CrossRefGoogle Scholar
  40. Spiegel PC, Ermolenko DN, Noller HF (2007) Elongation factor G stabilizes the hybrid-state conformation of the 70S ribosome. RNA 13(9):1473–1482. doi: 10.1261/Rna.601507 CrossRefGoogle Scholar
  41. Steitz TA (2008) A structural understanding of the dynamic ribosome machine. Nat Rev Mol Cell Biol 9(3):242–253. doi: 10.1038/nrm2352 CrossRefGoogle Scholar
  42. Terasaka N, Hayashi G, Katoh T, Suga H (2014) An orthogonal ribosome-tRNA pair via engineering of the peptidyl transferase center. Nat Chem Biol 10(7):555–557. doi: 10.1038/nchembio.1549 CrossRefGoogle Scholar
  43. Voorhees R, Weixlbaumer A, Loakes D, Kelley A, Ramakrishnan V (2009) Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat Struct Mol Biol 16(5):528–533. doi: 10.1038/nsmb.1577 CrossRefGoogle Scholar
  44. Wang KH, Neumann H, Peak-Chew SY, Chin JW (2007) Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nat Biotechnol 25(7):770–777. doi: 10.1038/Nbt1314 CrossRefGoogle Scholar
  45. Wang KH, Sachdeva A, Cox DJ, Wilf NW, Lang K, Wallace S, Mehl RA, Chin JW (2014) Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET. Nat Chem 6(5):393–403. doi: 10.1038/Nchem.1919 CrossRefGoogle Scholar
  46. Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292(5516):498–500. doi: 10.1126/science.1060077 CrossRefGoogle Scholar
  47. Yamagishi Y, Shoji I, Miyagawa S, Kawakami T, Katoh T, Goto Y, Suga H (2011) Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library. Chem Biol 18(12):1562–1570. doi: 10.1016/j.chembiol.2011.09.013 CrossRefGoogle Scholar
  48. Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S (2008) Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(ε)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. Chem Biol 15(11):1187–1197. doi: 10.1016/j.chembiol.2008.10.004 CrossRefGoogle Scholar
  49. Youngman EM, Green R (2005) Affinity purification of in vivo-assembled ribosomes for in vitro biochemical analysis. Methods 36(3):305–312. doi: 10.1016/j.ymeth.2005.04.007 CrossRefGoogle Scholar
  50. Zhang JW, Ferre-D’Amare AR (2014) Direct evaluation of tRNA aminoacylation status by the T-box riboswitch using tRNA-mRNA stacking and steric readout. Mol Cell 55(1):148–155. doi: 10.1016/j.molcel.2014.05.017 CrossRefGoogle Scholar
  51. Zhou XL, Du DH, Tan M, Lei HY, Ruan LL, Eriani G, Wang ED (2011) Role of tRNA amino acid-accepting end in aminoacylation and its quality control. Nucleic Acids Res 39(20):8857–8868. doi: 10.1093/nar/gkr595 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.ETH ZurichZurichSwitzerland

Personalised recommendations