Skip to main content

Spatial and Temporal Regulation of Cancellous Bone Structure by Trabecular Surface Remodeling

  • Chapter
  • First Online:
Bone Adaptation

Part of the book series: Frontiers of Biomechanics ((FB,volume 2))

  • 567 Accesses

Abstract

This chapter describes the application of a computer simulation of trabecular surface remodeling (proposed in Chap. 8) for investigating the spatial and temporal changes in the trabecular structure caused by remodeling. Two model parameters, the threshold value of the lazy zone and the sensing distance of the mechanical environment, are introduced into the remodeling rate equation to express the sensitivity of bone cells to mechanical stimuli. A two-dimensional rectangular cancellous bone model under non-uniform compressive loads is constructed using pixel finite elements. A simulation result revealed that the trabecular structure underwent temporal and spatial changes depending on the loading condition. Sensing distance regulates the spatial distribution of the trabecular structure, while the threshold value of the lazy zone regulates the rate of structural changes in time. The results indicate that these model parameters are important in controlling the spatial and temporal regulation of the trabecular structure that depends on the sensitivities of bone cells to mechanical stimuli.

This Chapter was adapted from Tsubota and Adachi (2005) with permission from Institute of Physics and Engineering in Medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adachi T, Tomita Y, Sakaue H, Tanaka M (1997) Simulation of trabecular surface remodeling based on local stress nonuniformity. Jsme Int J Ser C-Mech Syst Mach Elem Manuf 40(4):782–792. https://doi.org/10.1299/jsmec.40.782

    Article  Google Scholar 

  • Adachi T, Tsubota K, Tomita Y, Hollister SJ (2001) Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. J Biomech Eng-T ASME 123(5):403–409. https://doi.org/10.1115/1.1392315

    Article  Google Scholar 

  • Cowin SC, Hart RT, Balser JR, Kohn DH (1985) Functional adaptation in long bones: establishing in vivo values for surface remodeling rate coefficients. J Biomech 18(9):665–684

    Article  Google Scholar 

  • Hughes TJR, Ferencz RM, Hallquist JO (1987) Large-scale Vectorized implicit calculations in solid mechanics on a Cray X-Mp/48 utilizing Ebe preconditioned conjugate gradients. Comput Method Appl M 61(2):215–248

    Article  MathSciNet  MATH  Google Scholar 

  • Langton CM, Haire TJ, Ganney PS, Dobson CA, Fagan MJ (1998) Dynamic stochastic simulation of cancellous bone resorption. Bone 22(4):375–380. https://doi.org/10.1016/S8756-3282(97)00290-1

    Article  Google Scholar 

  • Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 2(6):595–610. https://doi.org/10.1002/jbmr.5650020617

    Article  Google Scholar 

  • Tabor Z, Rokita E (2002) Stochastic simulations of remodeling applied to a two-dimensional trabecular bone structure. Bone 31(3):413–417. https://doi.org/10.1016/S8756-3282(02)00837-2

    Article  Google Scholar 

  • Tsubota K, Adachi T (2005) Spatial and temporal regulation of cancellous bone structure: characterization of a rate equation of trabecular surface remodeling. Med Eng Phys 27(4):305–311. https://doi.org/10.1016/j.medengphy.2004.09.013

    Article  Google Scholar 

  • Tsubota K, Adachi T, Tomita Y (2002) Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state. J Biomech 35(12):1541–1551. https://doi.org/10.1016/S0021-9290(02)00173-2

    Article  Google Scholar 

  • Tsubota K, Suzuki Y, Yamada T, Hojo M, Makinouchi A, Adachi T (2009) Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: approach to understanding Wolff's law. J Biomech 42(8):1088–1094. https://doi.org/10.1016/j.jbiomech.2009.02.030

    Article  Google Scholar 

  • van Rietbergen B, Weinans H, Huiskes R, Odgaard A (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 28(1):69–81

    Article  Google Scholar 

  • Weinans H (1998) Is osteoporosis a matter of over-adaptation? Technol Health Care 6(5-6):299–306

    Google Scholar 

  • Xia SL, Ferrier J (1992) Propagation of a calcium pulse between osteoblastic cells. Biochem Biophys Res Commun 186(3):1212–1219

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kameo, Y., Tsubota, Ki., Adachi, T. (2018). Spatial and Temporal Regulation of Cancellous Bone Structure by Trabecular Surface Remodeling. In: Bone Adaptation. Frontiers of Biomechanics, vol 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56514-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56514-7_9

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56512-3

  • Online ISBN: 978-4-431-56514-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics