Skip to main content

Non-volatile Memories

  • Chapter
  • First Online:
Normally-Off Computing

Abstract

This chapter describes the basic properties of various computer memories. Historical evolution of the roles of non-volatile functionalities in computer architecture is discussed to explain recent rejuvenating interest in new non-volatile memory technologies. Next, required properties for memories, such as scalability, access speed, power consumption, are discussed referring to those of current main-stream memories, i.e., dynamic random access memory (DRAM), static RAM, and NAND flash memory. Then, histories, working principles, and properties of spin-transfer torque magnetoresistive RAM, resistive RAM, phase change RAM, ferroelectric RAM, and NOR flash memory are described. Finally, possible positioning of these various non-volatile memories in future computer architecture are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dennard, R.H., Gaensslen, F.H., Yu, H.-N., Rideout, V.L., Bassous, E., LeBlanc, A.R.: Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. of Solid-State Circuits 9, 256–268 (1974). October

    Article  Google Scholar 

  2. Fujita, S., Nomura, K., Noguchi, H., Takeda, S., Abe, K.: Novel nonvolatile memory hierarchies to realize “Normally-Off Mobile Processors”. In: ASPDAC2014, Singapore, January 2014

    Google Scholar 

  3. Micron: 3D XPoint Technology. https://www.micron.com/about/emerging-technologies/3d-xpoint-technology

  4. Samsung: Samsung Electronics Begins Mass Producing Industry First 256-Gigabit, 3D V-NAND Flash Memory. http://www.samsung.com/semiconductor/about-us/news/22659

  5. Itoh, K.: VLSI Memory Chip Design. Springer, Berlin (2001). doi:10.1007/978-3-662-04478-0

    Book  MATH  Google Scholar 

  6. Ando, K., Fujita, S., Ito, J., Yuasa, S., Suzuki, Y., Nakatani, Y., Miyazaki, T., Yoda, H.: J. Appl. Phys. 115, 172607 (2014)

    Article  Google Scholar 

  7. Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuset, G., Friederich, A., Chazelas, J.: Phys. Rev. Lett. 61, 2472 (1988)

    Article  Google Scholar 

  8. Miyazaki, T., Tezuka, N.: J. Magn. Magn. Mater. 139, L231 (1995)

    Article  Google Scholar 

  9. Moodera, J.S., Kinder, L.R., Wong, T.M., Meservey, R.: Phys. Rev. Lett. 74, 3273 (1995)

    Article  Google Scholar 

  10. Yuasa, S., Djayaprawira, D.D.: J. Phys. D Appl. Phys. 40, R337 (2007)

    Article  Google Scholar 

  11. Everspin: 16Mb MRAM. https://www.everspin.com/density/16384

  12. Slonczewski, J.C.: J. Magn. Magn. Mater. 159, L1 (1996)

    Article  Google Scholar 

  13. Berger, L.: Phys. Rev. B 54, 9353 (1996)

    Article  Google Scholar 

  14. Katine, J.A., Albert, F.J., Buhrman, R.A., Myers, E.B., Ralph, D.C.: Phys. Rev. Lett. 84, 3149 (2000)

    Article  Google Scholar 

  15. Huai, Y., Albert, F., Nguyen, P., Pakala, M., Valet, T.: Appl. Phys. Lett. 84, 3118 (2004)

    Article  Google Scholar 

  16. Kubota, H., Fukushima, A., Ootani, Y., Yuasa, S., Ando, K., Maehara, H., Tsunekawa, K., Djayaprawira, D.D., Watanabe, N., Suzuki, Y.: Jpn. J. Appl. Phys. 44, L1237 (2005)

    Article  Google Scholar 

  17. Kishi, T., Yoda, H., Kai, T., Nagase, T., Kitagawa, E., Yoshikawa, M., Nishiyama, K., Daibou, T., Nagamine, M., Amano, M., Takahashi, S., Nakayama, M., Shimomura, N., Aikawa, H., Ikegawa, S., Yuasa, S., Yakushiji, K., Kubota, H., Fukushima, A., Oogane, M., Miyazaki, T., Ando, K.: IEEE International Electron Devices Meeting, pp. 309–312 (2008)

    Google Scholar 

  18. Everspin: 64 Mb Spin-Torque MRAM—DDR3 DRAM Compatioble. https://www.everspin.com/64mb-spin-torque-mram-ddr3-dram-compatible

  19. Park, C., Kan, J.J., Ching, C., Ahn, J., Xue, L., Wang, R., Kontos, A., Liang, S., Bangar, M., Chen, H., Hassan, S., Gottwald, M., Zhu, X., Pakala, M., Kang, S.H., Int, I.E.E.E.: Electron Devices Meet. 26(2), 1–4 (2015)

    Google Scholar 

  20. Kitagawa, E., Fujita, S., Nomura, K., Noguchi, H., Abe, K., Ikegami, K., Daibou, T., Kato, Y., Kamata, C., Kashiwada, S., Shimomura, N., Ito, J., Yoda, H.: IEEE International Electron Devices Meeting, pp. 26.2.1–26.2.4 (2012)

    Google Scholar 

  21. Saida, D., Shimomura, N., Kitagawa, E., Kamata, C., Yakabe, M., Ohsawa, Y., Fujita, S., Ito, J.: Intermag 2014 EC-5 (2014)

    Google Scholar 

  22. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: Nature 453, 80 (2008)

    Article  Google Scholar 

  23. Liu, S.Q., Wu, N.J., Igunatiev, A.: Appl. Phys. Lett. 76, 2749 (2000)

    Article  Google Scholar 

  24. Panasonic: Panasonic starts world’s first mass production of ReRAM Mounted Microcomputers. http://news.panasonic.com/press/news/official.data/data.dir/2013/07/en130730-2/en130730-2.html

  25. Liu, T.-Y., Yan, T.H., Scheuerlein, R., Chen, Y., Lee, J.K.Y., Balakrishnan, G., Yee, G., Zhang, H., Yap, A., Ouyang, J., Sasaki, T., Addepalli, S., Al-Shamma, A., Chen, C.-Y., Gupta, M., Hilton, G., Joshi, S., Kathuria, A., Lai, V., Masiwal, D., Matsumoto, M., Nigam, A., Pai, A., Pakhale, J., Siau, C.H., Wu, X., Yin, R., Peng, L., Kang, J.Y., Huynh, S., Wang, H., Nagel, N., Tanaka, Y., Higashitani, M., Minvielle, T., Gorla, C., Tsukamoto, T., Yamaguchi, T., Okajima, M., Okamura, T., Takase, S., Hara, T., Inoue, H., Fasoli, L., Mofidi, M., Shrivastava, R., Quader, K.: IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Paper 2013, pp. 210–211 (2013)

    Google Scholar 

  26. Fackenthal, R., Kitagawa, M., Otsuka, W., Prall, K., Mills, D., Tsutsui, K., Javanifard, J., Tedrow, K., Tsushima, T., Shibahara, Y., Hush, G.: IEEE International Solid- State Circuits Conference (ISSCC) Digest of Technical Papers, pp. 338–339 (2014)

    Google Scholar 

  27. Ovshinsky, S.R.: Phys. Rev. Lett. 21, 1450 (1968)

    Article  Google Scholar 

  28. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., Takao, M.: J. Appl. Phys. 69, 2849 (1991)

    Article  Google Scholar 

  29. Samsung: Samsung announces production start-up of its next-generation nonvolatile memory PRAM. http://www.samsung.com/semiconductor/insights/news/4097

  30. Choi, Y., Song, I., Park, M.-H., Chung, H., Chang, S., Cho, B., Kim, J., Oh, Y., Kwon, D., Sunwoo, J., Shin, J., Rho, Y., Lee, C., Kang, M.G., Lee, J., Kwon, Y., Kim, S., Kim, J., Lee, Y.-J., Wang, Q., Cha, S., Ahn, S., Horii, H., Lee, J., Kim, K., Joo, H., Lee, K., Lee, Y.-T., Yoo, J., Jeong, G.: IEEE International Solid- State Circuits Conference (ISSCC) Digest of Technical Papers 2012, pp. 46–48 (2012)

    Google Scholar 

  31. Chen, S., Gibbons, P., Nath, S.: Proceedings of CIDR, 2011, p. 21 (2011)

    Google Scholar 

  32. Kang, M.J., Park, T.J., Kwon, Y.W., Ahn, D.H., Kang, Y.S., Jeong, H., Ahn, S.J., Song, Y.J., Kim, B.C., Nam, S.W., Kang, H.K., Jeong, G.T., Chung, C.H.: IEEE International Electron Devices Meeting 2011, pp. 3.1.1–3.1.4 (2011)

    Google Scholar 

  33. Lung, H.L., BrightSky, M., Chien, W.C., Wu, J.Y., Kim, S., Kim, W., Cheng, H.Y., Zhu, Y., Wang, T.Y., Cheek, R., Bruce, R., Lam, C.: IEEE VLSI Technology Digest, pp.118–119 (2014)

    Google Scholar 

  34. Kaneko, Y., Tanaka, H., Ueda, M., Kato, Y., Fujii, E.: IEEE Trans. Electron Dev. 58, 1311 (2011)

    Article  Google Scholar 

  35. Muller, J., et al.: Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories. In: IEEE IEDM Technical Digest, pp. 10.8.1–10.8.4 (2013)

    Google Scholar 

  36. Shiga, H., et al.: A 1.6GB/s DDR2 128 Mb chain FeRAM with scalable octal bitline and sensing schemes. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 464–465, 465a, February 2009

    Google Scholar 

  37. Cypress: 4-Mbit (256 K \(\times \) 16) F-RAM Memory. Cypress, San Jose (2016)

    Google Scholar 

  38. Cypress: 64-Kbit (8 K \(\times \) 8) Serial (SPI) Automotive F-RAM. Cypress, San Jose (2015)

    Google Scholar 

  39. Taito, Y., Nakano, M., Okimoto, H., Okada, D., Ito, T., Kono, T., Noguchi, K., Hidaka, H., Yamauchi, T.: A 28 nm embedded SG-MONOS flash macro for automotive achieving 200 MHz read operation and 2.0 MB/s write throughput at Tj, of 170 \(^\circ \)C. In: ISSCC 2015, pp. 132–133 (2015)

    Google Scholar 

  40. Wong, H.-S.P., Ahn, C., Cao, J., Chen, H.-Y., Fong, S.W., Jiang, Z., Neumann, C., Qin, S., Sohn, J., Wu, Y., Yu, S., Zheng, X.: Stanford memory trends. https://nano.stanford.edu/stanford-memory-trends. Accessed 5 Jan 2016

  41. International Technology Roadmap for Semiconductors: Semiconductor industry association (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Ando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Ando, K., Fujita, S., Hayashikoshi, M., Fujimori, Y. (2017). Non-volatile Memories. In: Nakada, T., Nakamura, H. (eds) Normally-Off Computing. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56505-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56505-5_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56503-1

  • Online ISBN: 978-4-431-56505-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics