What is Scanning Transmission Electron Microscopy (STEM)?

  • Nobuo Tanaka


From this chapter, we start with studying scanning transmission electron microscopy (STEM) and its imaging theory. The STEM which uses a fine electron probe and a scanning system seems different from TEM explained in previous chapters. The image intensity is equivalent to that by TEM due to the reciprocal theorem in optics. The STEM is nowadays recognized as a very effective tool for structural and chemical analyses of nanomaterials.


Objective Lens Scanning Transmission Electron Microscopy Probe Size Electron Beam Induce Current Scanning Transmission Electron Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Born, M., & Wolf, E. (1970). Principles of Optics. Oxford: Pergamon Press.Google Scholar
  2. Cowley, J. M. (1969). Applied Physics Letters, 15, 58.CrossRefGoogle Scholar
  3. Crewe, A. V., et al. (1966). Science, 154, 729.CrossRefGoogle Scholar
  4. Crewe, A. V. et al. (1970), ibid, 168, 1338.Google Scholar
  5. Erni, R., et al. (2009). Physical Review Letters, 102, 096101.CrossRefGoogle Scholar
  6. Everhart, T. E. (1958). Ph.D thesis, University of Cambridge.Google Scholar
  7. Findlay, S. D., et al. (2010). Ultramicroscopy, 110, 903.CrossRefGoogle Scholar
  8. Hirsch, et al. (1977). Electron microscopy of thin crystals. Florida: Krieger.Google Scholar
  9. Ishikawa, R., et al. (2011). Nature Mater, 10, 278.CrossRefGoogle Scholar
  10. Kim, S., et al. (2010). Applied Physics Express, 3, 081301.CrossRefGoogle Scholar
  11. Kirkland, E. J. (2011). Ultramicroscopy, 111, 1523.CrossRefGoogle Scholar
  12. Krivanek, O., et al. (2014). Nature, 514, 209.CrossRefGoogle Scholar
  13. Miyata, T., et al. (2014). Microscopy, 63, 377.Google Scholar
  14. Mook, H. W., & Kruit, P. (1999). Ultramicroscopy, 78, 43.CrossRefGoogle Scholar
  15. Mory, C., et al. (1987). Ultramicroscopy, 21, 171.CrossRefGoogle Scholar
  16. Mukai, M., et al. (2002). Proceedings IMC-15 (Duban), 3, 321.Google Scholar
  17. Nagaoka, K., et al. (1998). Nature, 396, 557.CrossRefGoogle Scholar
  18. Nellist, P. D., & Pennycook, S. J. (1999). Ultramicroscopy, 78.111.Google Scholar
  19. Okunishi, E., et al. (2009). Microscopy and Microanalysis, 15(Suppl. 2), 164.CrossRefGoogle Scholar
  20. Oshima, Y., et al. (2010a). Journal of Electron Microscopy, 59, 457.CrossRefGoogle Scholar
  21. Oshima, Y., et al. (2010b). Physical Review B, 81, 35317.CrossRefGoogle Scholar
  22. Pennycook, S. J., & Jesson, D. E. (1990). Physical Review Letters, 64, 938.CrossRefGoogle Scholar
  23. Reimer, L. (1984). Transmission Electron Microscopy. Berlin: Springer.CrossRefGoogle Scholar
  24. Reimer, L. (1985). Scanning Electron Microscopy. Berlin: Springer.CrossRefGoogle Scholar
  25. Retz, P., et al. (2016). Nature Com., 7, 10945.CrossRefGoogle Scholar
  26. Rodenburg, J. M., et al. (1993). Ultramicroscopy, 48, 304.CrossRefGoogle Scholar
  27. Rose, A. (1948). In L. Marton (Ed.), Advanced Electronics. New York: Academic Press.Google Scholar
  28. Sato, M., et al. (1991). Optik, 89, 44.Google Scholar
  29. Sawada, H., et al. (2009). Journal of Electron Microscopy, 58, 357.CrossRefGoogle Scholar
  30. Spence, J. C. H., & Cowley, J. (1978). Optik, 50, 129.Google Scholar
  31. Spence, J. C. H. (2003). High-resolution electron microscopy. Oxford: Oxford Univ. Press.Google Scholar
  32. Voyles, P. M., et al. (2002). Nature, 416, 826.CrossRefGoogle Scholar
  33. Zeitler, E., & Thomson, M. G. R. (1970). Optik, 31, 258.Google Scholar
  34. Zhu, Y., et al. (2009). Nature Mater, 8. 808.Google Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Nagoya UniversityNagoyaJapan

Personalised recommendations