Advertisement

Advanced Transmission Electron Microscopy

  • Nobuo Tanaka
Chapter

Abstract

In this chapter, starting with the basic theory of electron energy loss spectroscopy (EELS), we study the advanced topics in TEM such as energy-filtered TEM, electron holography, electron tomography, and aberration-corrected TEM.

Keywords

Interference Fringe Electron Energy Loss Spectroscopy Spherical Aberration Reference Wave Chromatic Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ajika, N., & Hashimoto, H. (1985). Japanese Journal of Applied Physics, 24, L41.CrossRefGoogle Scholar
  2. Akashi, T., et al. (2015). Applied Physics Letters, 106, 074101.Google Scholar
  3. Bando, Y., et al. (2001). Japanese Journal of Applied Physics, 40, L1193.CrossRefGoogle Scholar
  4. Beck, V. D. (1979). Optik, 53, 241.Google Scholar
  5. Born, M., & Wolf, E. (1970). Principles of optics. London: Pergamon Press.Google Scholar
  6. Cormack, A. M. (1964). Journal of Applied Physics, 35, 2908.CrossRefGoogle Scholar
  7. Egerton, R. F. (1996). Electron energy loss spectroscopy in the electron microscope. New York: Plenum Press.CrossRefGoogle Scholar
  8. Erni, R. (2010). Aberration corrected imaging in transmission electron microscopy. London: Imperial College Press.CrossRefGoogle Scholar
  9. Frank, J. (1992). Electron tomogarphy. New York: Plenum Press.CrossRefGoogle Scholar
  10. Gabor, D. (1949). Proc. Roy. Soc., A197, 454.CrossRefGoogle Scholar
  11. Haider, M., et al. (1998a). Nature, 392, 768.CrossRefGoogle Scholar
  12. Haider, M., et al. (1998b). Journal of Electron Microscopy, 47, 395.CrossRefGoogle Scholar
  13. Harada, K., et al. (2004). Applied Physics Letters, 84, 3229.CrossRefGoogle Scholar
  14. Hytch, M., et al. (1998). Ultramicroscopy, 74, 131.CrossRefGoogle Scholar
  15. Hytch, M., et al. (2008). Nature, 453, 1086.CrossRefGoogle Scholar
  16. Jia, C. L., et al. (2004). Science, 303, 2001.CrossRefGoogle Scholar
  17. Jia, C. L., et al. (2008). Nature Material, 7, 57.CrossRefGoogle Scholar
  18. Kimoto, K., et al. (2007). Nature, 450, 702.CrossRefGoogle Scholar
  19. Kittel, C. (1963). Quantum theory of solids. New York: John Wiley & Sons.Google Scholar
  20. Krivanek, O., et al. (1999). Ultramicroscopy, 78, 1.CrossRefGoogle Scholar
  21. Lai, G., et al. (1994). Journal of Applied Physics, 75, 4593.CrossRefGoogle Scholar
  22. Lentzen, M., et al. (2002). Ultramicroscopy, 92, 233.CrossRefGoogle Scholar
  23. Lentzen, M. (2008). Microscopy and Microanalysis, 1, 1456.Google Scholar
  24. Lichte, H. (1991). Ultramicroscopy, 38, 13.CrossRefGoogle Scholar
  25. Mollenstedt, G., & Wahl, H. (1968). Naturwissenschaften, 55, 340.CrossRefGoogle Scholar
  26. Radon, J. (1917). Ber. Verh. Konig., Sachs, Ges. Wiss. Leipzig, Math. Phys., 69, 262.Google Scholar
  27. Reimer, L. (1995). Energy-filtering transmission electron microscopy. Berlin: Springer.CrossRefGoogle Scholar
  28. Rose, H. (1981). Nuclear Instruments & Methods, 187, 187.Google Scholar
  29. Rose, H. (2004). ibid, A519, 12.Google Scholar
  30. Sawada, H. (2015), Scanning transmission electron microscopy for nanomaterials. In: N. Tanaka (ed.) (Imperial College Press, London).Google Scholar
  31. Scherzer, O. (1936). Z. Physik, 101, 593.CrossRefGoogle Scholar
  32. Scherzer, O. (1947). Optik, 2, 114.Google Scholar
  33. Scherzer, O. (1949). Journal of Applied Physics, 20, 20.CrossRefGoogle Scholar
  34. Scherzer, O. (1970). Ber. Bunsengesell., 74, 1154.Google Scholar
  35. Seelinger, R. (1951). Optik, 8, 311.Google Scholar
  36. Schiff, L. (1968). Quantum Mechnics. New York: McGraw-Hill.Google Scholar
  37. Seidel, L. (1856). Astr. Nachr., 43, 289.CrossRefGoogle Scholar
  38. Tanaka, N. (2015). Scanning Transmission Electron Microscopy of Nanomaterials. London: Imperial College Press.Google Scholar
  39. Tanaka, N., et al. (2003). Journal of Electron Microscopy, 52, 69.Google Scholar
  40. Tanaka, N., et al. (2004a), Proc. APEM-8 (Kanazawa), pp. 36.Google Scholar
  41. Tanaka, N., et al. (2004b). Proc. Microscopy & Microanalysis, 982CD.Google Scholar
  42. Tanigaki, T., et al. (2012). Applied Physics Letters, 101, 043101.CrossRefGoogle Scholar
  43. Taniguchi, Y., et al. (1992). J. Electron Microscopy, 41, 21.Google Scholar
  44. Tonomura, A., et al. (1968). Japanese Journal of Applied Physics, 7, 295.CrossRefGoogle Scholar
  45. Tonomura, A. (1987). Reviews of Modern Physics, 59, 248.CrossRefGoogle Scholar
  46. Urban, K., et al. (2009). Philosophical Transaction of Royal Society, A367, 3735.Google Scholar
  47. Van Hove, L. (1954). Physical Review, 95, 249.CrossRefGoogle Scholar
  48. Wang, A., et al. (2010). Ultramicroscopy, 110, 527.CrossRefGoogle Scholar
  49. Wang, Y. Y. (2006). JEOL News, 39, 6.Google Scholar
  50. Wang, Z. (2002). Applied Physics Letters, 80, 246.CrossRefGoogle Scholar
  51. Watanabe, H., & Uyeda, R. (1962). Journal of the Physical Society of Japan, 17, 569.CrossRefGoogle Scholar
  52. Yamamoto, K., et al. (2000). J. Electron Microscopy, 49, 31.CrossRefGoogle Scholar
  53. Yamasaki, J., et al. (2005). J. Electron Microscopy, 54, 209.CrossRefGoogle Scholar
  54. Yamasaki, J., et al. (2015). Ultramicroscopy, 151, 224.CrossRefGoogle Scholar
  55. Zach, J., & Haider, M. (1995). Nuclear Instruments and Methods in Physics, A365, 316.CrossRefGoogle Scholar
  56. Zemlin, F., et al. (1978). Ultramicroscopy, 3, 49.CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Nagoya UniversityNagoyaJapan

Personalised recommendations