Advertisement

Image Contrast and Its Formation Mechanism in STEM

  • Nobuo Tanaka
Chapter

Abstract

In this chapter, various kinds of image contrast and related theories for STEM are explained in detail and their actual STEM images are shown. The introductory knowledge for energy-dispersive X-ray spectroscopy (EDX) and scanning confocal electron microscope (SCEM) is also described.

Keywords

Image Contrast Point Spread Function Single Atom Diffraction Effect Medium Range Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baba, N., et al. (2008). Ultramicroscopy, 108, 239.CrossRefGoogle Scholar
  2. Borisevich, A. Y. et al. (2006). Proceedings of the National Academy of Sciences, USA, 103, 3044.Google Scholar
  3. Born, M., & Wolf, E. (1970). Principles of optics. Oxford: Pergamon Press.Google Scholar
  4. Cowley, J. (1969). Applied Physics Letters, 15, 58.CrossRefGoogle Scholar
  5. Cowley, J. (1988). In Buseck et al. (Eds.), High-resolution electron microscopy. Oxford: Oxford University Press.Google Scholar
  6. Cliff, G., & Lorimer, G. W. (1975). Journal of Microscopy, 103, 203.CrossRefGoogle Scholar
  7. Crewe, A. V., et al. (1970). Science, 168, 1338.CrossRefGoogle Scholar
  8. Egerton, R. F. (1996). Electron energy loss spectroscopy in the transmission electron microscope. New York: Plenum Press.CrossRefGoogle Scholar
  9. Findlay, S. D., et al. (2010). Ultramicroscopy, 110, 903.CrossRefGoogle Scholar
  10. Fleishmann, H. (1960). Zeitschrift fur Naturforschung, 15a, 1090.Google Scholar
  11. Frank, J. (1992). Electron tomography. New York: Plenum Press.CrossRefGoogle Scholar
  12. Fraser, H. L. (1977). Philosophical Magazine, 35, 159.CrossRefGoogle Scholar
  13. Freitag, B. (2011), personal communication.Google Scholar
  14. Goldstein, J. I. (1979), in Introduction to analytical electron microscopy. New York: Plenum Press.Google Scholar
  15. Groves, T. (1975). Ultramicroscopy, 1, 15.Google Scholar
  16. Harada, Y., et al. (1992). Journal of Electron Microscopy, 42, 294.Google Scholar
  17. Hashimoto, H. et al. (1971). The Japanese Journal of Applied Physics. Google Scholar
  18. Hirata, A., et al. (2007). Materials Transactions, 48, 1299.CrossRefGoogle Scholar
  19. Howie, A. (1979). The Journal of Microscopy, 117, 11.CrossRefGoogle Scholar
  20. Ishikawa, R., et al. (2011). Nature Materials, 10, 278.CrossRefGoogle Scholar
  21. Kociak (2011). In S. D. Pennycook & P. D. Nellist (Eds.), Scanning transmission electron microscopy. New York: Springer.Google Scholar
  22. Koguchi, M., et al. (2001). Journal of Electron Microscopy, 50, 235.Google Scholar
  23. Lenz, F. (1954). Zeitschrift für Naturforschung, A9, 185.Google Scholar
  24. Midgley, P. A., & Weyland, M. (2003). Ultramicroscopy, 96, 413.CrossRefGoogle Scholar
  25. Mihama, K., & Tanaka, N. (1976). Journal of Electron Microscopy, 25, 65.Google Scholar
  26. Murata, K., et al. (2014). Ultramicroscopy, 146, 39.CrossRefGoogle Scholar
  27. Nellist, P. D., & Pennycook, S. J. (1999). Ultarmicroscopy, 78, 111.CrossRefGoogle Scholar
  28. Nellist, P. D., et al. (2006). Applied Physics Letters, 89, 124105.CrossRefGoogle Scholar
  29. Nellist, P. D., et al. (2008). Microscopy and Microanalysis, 14, 82.CrossRefGoogle Scholar
  30. Okunishi, E., et al. (2009). Microscopy and Microanalysis, Suppl 2, 164.CrossRefGoogle Scholar
  31. Oshima, Y., et al. (2010). Journal of Electron Microscopy, 59, 457.CrossRefGoogle Scholar
  32. Pennycook, S. J., & Jesson, D. E. (1990). Physical Review Letters, 64, 938.CrossRefGoogle Scholar
  33. Pennycook, S. J., & Jesson, D. E. (1992). Acta Metallurgica et Materialia, 40, S149.CrossRefGoogle Scholar
  34. Pennycook, S. J., & Yan, Y. (2001). In X.-F. Zhang (Eds.), Proceedings of Transmission Electron Microscopy. Berlin: Springer.Google Scholar
  35. Reimer, L. (1984). Transmission electron microscopy. Berlin: Springer.CrossRefGoogle Scholar
  36. Schiff, L. (1968). Quantum mechanics. New York: McGraw-Hill.Google Scholar
  37. Spence, J. C. H., & Cowley, J. M. (1978). Optik, 50, 129.Google Scholar
  38. Sueda, S., et al. (2010). Ultramicroscopy, 110, 1120.CrossRefGoogle Scholar
  39. Suenaga, et al. (2000). Science, 290, 2280.CrossRefGoogle Scholar
  40. Takeguchi, M., et al. (2010). AMTC Letters, 2, 110.Google Scholar
  41. Tanaka, N., et al. (1980). Ultramicroscopy, 5, 35.CrossRefGoogle Scholar
  42. Tanaka, N. (2008). In Hawkes (Ed.), Advances in imaging and electron physics (Vol. 153). Amsterdam: Academic Press.Google Scholar
  43. Tanaka, N., et al. (2013). Microscopy, 63, 205.CrossRefGoogle Scholar
  44. Tanaka, N. (2015). Scanning transmission electron microscopy of nanomaterials. London: Imperial College Press.Google Scholar
  45. Treacy, M., et al. (2011). Microscopy and Microanalysis, 17, 847.CrossRefGoogle Scholar
  46. Verbeeck, J. (2009). Ultramicroscopy, 109, 350.CrossRefGoogle Scholar
  47. Watanabe, K., et al. (2001). Physical Review B, 64, 115432.CrossRefGoogle Scholar
  48. Watanabe, K., et al. (2004). Ultramicroscopy, 102, 13.CrossRefGoogle Scholar
  49. Watanabe, M. (2011). In S. D. Pennycook & P. D. Nellist (Eds.), Scanning transmission electron microscopy. New York: Springer.Google Scholar
  50. Zalzec, N. (1984). In R. H. Geiss (Ed.), Analytical electron microscopy. San Francisco: San Francisco Press.Google Scholar
  51. Zalzec, N. (2003). Microscopy Today, 6, 8.Google Scholar
  52. Zeitler, E., & Thomson, M. G. R. (1970). Optik, 31, 258.Google Scholar
  53. Zhu, Y., et al. (2009). Nature Materials, 8, 808.CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Nagoya UniversityNagoyaJapan

Personalised recommendations