Skip to main content

Applications of Nanoclay-Containing Polymer Nanocomposites

  • Chapter
  • First Online:
Inorganic Nanosheets and Nanosheet-Based Materials

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This chapter provides an overview on properties and applications of nanoclay-containing polymer nanocomposites (PNCs). Though PNCs are advantageous over traditional polymer composites, the key parameter controlling the successful commercialization of the PNCs is the cost-performance index. The future of PNCs along with the value chain from product development to the commercialization and possibility of recyclability and reusability have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Okada A, Kawasumi M, Usuki A et al (1989) Nylon 6–clay hybrid. MRS Proc 45–50

    Google Scholar 

  2. Ray SS (2013) Clay containing polymer nanocomposites: from fundamentals to real applications. Elsevier. ISBN 978-0-444-59437-2

    Google Scholar 

  3. Lloyd SM, Lave LB (2003) Life cycle economic and environmental implications of using nanocomposites in automobiles. Environ Sci Technol 37:3458–3466

    Article  CAS  Google Scholar 

  4. Ray SS (2013) Environmentally friendly polymer nanocomposites. Woodhead Publishing, England. ISBN 0 85709 777 6

    Google Scholar 

  5. McWilliams A, BCC research, global markets for global markets for nanocomposites, nanoparticles, nanoclays, and nanotubes. NANO21F, ISBN 1-56965-807-2

    Google Scholar 

  6. Onder E, Sarier N, MS Ersoy (2012) The manufacturing of polyamide- and polypropylene-organoclay nanocomposites filaments and their suitability for textile applications. Thermochim Acta 543:37–58

    Article  CAS  Google Scholar 

  7. Khanjanzadeh H, Pirayesh H, Salari A (2013) Long term hygroscopic characteristics of polypropylene based hybrid composites with and without organo-modified clay. Eur J Wood Prod 71:211–218

    Article  CAS  Google Scholar 

  8. Komatsu LGH, Wl Oliani, Lugao AB et al (2014) Environmental ageing of irradiated polypropylene/montmorillonite nanocomposites obtained in molten state. Rad Phys Chem 97:233–238

    Article  CAS  Google Scholar 

  9. Kulshreshtha AK, Maiti AK, Choudhuri MS et al (2006) Nano-addition of raw bentonite enhances polypropylene (PP) properties. J Appl Polym Sci 99:1004–1009

    Article  CAS  Google Scholar 

  10. Morreale M, Dintcheva NT (2013) Accelerated weathering of PP based nanocomposites: effect of the presence of maleic anhydride grafted polypropylene. eXPRESS Polym Lett 7:703–715

    Google Scholar 

  11. He A, Wang L, Yao W et al (2010) Structural design of imidazolium and its application in PP/montmorillonite nanocomposites. Polym Degrad Stabil 95:651–655

    Article  CAS  Google Scholar 

  12. Dahiya JB, Kumer N, Bockhorn H (2014) Fire performance and thermal stability of polypropylene nanocomposites containing organic phosphinate and ammonium polyphosphate additives. Fire Mater 38:1–12

    Article  CAS  Google Scholar 

  13. Yi D, Yang R, Wilkie CA (2014) Full scale nanocomposites: clay in fire retardant and polymer. Polym Degrad Stabil 105:31–41

    Article  CAS  Google Scholar 

  14. Liu H, Zhong Q, Kong Q et al (2014) Synergistic effect of organophilic Fe-montmorillonite on flammability in polypropylene/intumescent flame retardant system. J Therm Anal Calorim 117:693–699

    Article  CAS  Google Scholar 

  15. Sari MG, Shahbazi M, Pakdel AS (2014) Developing a novel hyperbranched polymer-modified PP/clay nanocomposite: characteristic investigation. Polym-Plast Technol Eng 53:1561–1573

    Article  CAS  Google Scholar 

  16. Downing-Perrault A (2005) Polymer nanocomposites are the future. Downloaded on 18 Jan 2016

    Google Scholar 

  17. Ayhan Z, Cimmino S, Esturk O et al (2015) Development of films of novel polypropylene based nanomaterials for food packaging application. Packag Technol Sci 28:589–602

    Article  CAS  Google Scholar 

  18. Agarwal A, Raheja A, Natarajan TS et al (2014) Effect of electrospun montmorillonite-nylon 6 nanofibrous membrane coated packaging on potato chips and bread. Innovat Food Sci Emer Technol 26:424–430

    Article  CAS  Google Scholar 

  19. Lan T (2009) Nanocomposite materials for packaging film applications, symposium on nanomaterials for flexible packaging. Downloaded on 18 Jan 2016

    Google Scholar 

  20. Yusof F, Olalekan ST, Shah QH et al (2011) Chemical resistance tests on PP-ternary nanocomposite for its application in bioreactor liner fabrication. Sci China 54:2217–2223

    Article  Google Scholar 

  21. Maul P (2005) Barrier enhancement using additives. Fillers, pigments and additives for plastics in packaging applications. Pira international conference Brussels, Belgium, 5–6 Dec

    Google Scholar 

  22. Siró I, Plackett D, Sommer-Larsen P (2010) A comparative study of oxygen transmission rates through polymer films based on fluorescence quenching. Packag Technol Sci 23:301–315

    Article  Google Scholar 

  23. Di Maio L, Scarfato P, Galdi MR (2015) Development and oxygen scavenging performance of three-layer active PET films for food packaging. J Appl Polym Sci 132:41465 (10 pages)

    Google Scholar 

  24. Kubisova H, Merinska D (2008) Polyolefin/clay nanocomposites: comparing mechanical and barrier properties. In: Aciemo D, D’Amore A, Grassia L (eds) CP1042, IVth international conference on times of polymers (TOP) and composites. American Institute of Physics, ISBN 978-0-7354-0570-7/08

    Google Scholar 

  25. Sánchez-Valdes S, Méndez-Nonell J, Madellín-Rodríguez FJ et al (2010) Evaluation of different amine-functionalized polyethylenes as compatibilizers for polyethylene film nanocomposites. Polym Int 59:704–711

    Google Scholar 

  26. Olewnik E, Garman K, Peichota G et al (2012) Thermal properties of nanocomposites based on polyethylene and n-heptaquinolium modified montmorillonite. J Therm Anal Calorim 110:479–484

    Article  CAS  Google Scholar 

  27. Manias E, Heidecker MJ, Nakazima H, Costache MC et al (2011) Poly(ethylene terephthalate) nanocomposites using nanoclays modified with thermally stable surfactants, Chap. 4. Cambridge University Press, Cambridge

    Google Scholar 

  28. Sherman LM (2004) Chasing nanocomposites. Plast Technol, November Issue. Downloaded on 9 Feb 2016

    Google Scholar 

  29. Somwangthanaroj A, Photyotin K, Limpanart S, et al (2012) Effect of type of surfactants and organoclay loading on the mechanical properties of EVOH/clay nanocomposite blown films. Polym Plast Technol Eng 51:1173–1180

    Google Scholar 

  30. Kim SW, Cha S-H (2014) Thermal, mechanical, and gas barrier properties of ethylene-vinyl alcohol copolymer-based nanocomposites for food packaging films: effects of nanoclay loading. J Appl Polym Sci 131:40289 (8 pages)

    Google Scholar 

  31. Mokwena KK, Tang J (2012) Ethylene (vinyl alcohol): a review of barrier properties for packaging shelf stable foods. Crit Rev Food Sci Nutr 52:640–650

    Article  CAS  Google Scholar 

  32. Apoorva S, Arjan G, Yoojeong K (2014) Multilayer flame retardant barrier films and fabrics. US Patent 8784978 B2

    Google Scholar 

  33. Kim M (2006) Nanocomposite composition having barrier property. US Patent 20060094811 A1

    Google Scholar 

  34. Cho JW, Paul DR (2001) Nylon 6 nanocomposites by melt compounding. Polymer 42:1083–1094

    Article  CAS  Google Scholar 

  35. Turner SR, Connell GW, Gilmer JW et al (2002) High barrier amorphous polyamide-clay nanocomposite and a process for preparing same. US Patents 6417262 B1

    Google Scholar 

  36. García A, Eceolaza S, Iriarte M et al (2007) Barrier character improvement of an amorphous polyamide (trogamid) by the addition of a nanoclay. J Memb Sci 301:190–199

    Article  Google Scholar 

  37. Adame D, Beall GW (2009) Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Appl Clay Sci 42:545–552

    Article  CAS  Google Scholar 

  38. Shah RK, Paul DR (2004) Nylon 6 nanocomposites prepared by a melt mixing Masterbatch process. Polymer 45:2991–3000

    Article  CAS  Google Scholar 

  39. Fornes TD, Yoon PJ, Paul DR (2003) Polymer matrix degradation and color formation in melt processed nylon 6/clay nanocomposites. Polymer 44:7545–7556

    Article  CAS  Google Scholar 

  40. Hasani-Sadrabadi MM, Ghaffarian SR, Mokarram-Dorri N et al (2009) Characterization of nanohybrid membranes for direct methanol fuel cell applications. Solid State Ion 180:1497–1504

    Article  CAS  Google Scholar 

  41. Ilbeygi H, Ismali AF, Mayahi A et al (2013) Transport properties and direct methanol fuel cell performance of sulfonated poly (ether ether ketone)/cloisite/triaminopyrimidine nanocomposite polymer electrolyte membrane at moderate temperature. Sep Purif Technol 118:567–575

    Article  CAS  Google Scholar 

  42. Doğan H, Inan TY, Koral M et al (2011) Organo-montmorillonites and sulfonated PEEK nanocomposite membranes for fuel cell applications. Appl Clay Sci 52:285–294

    Article  Google Scholar 

  43. Plastic in European cars (2000–2008) A Rapra Industry Analysis Report, IG Helps, Febrary 2001

    Google Scholar 

  44. Yilmaz O, Cheaburu CN, Durraccio D et al (2010) Preparation of stable acrylate/montmorillonite nanocomposite latex via in situ batch emulsion polymerization: effect of clay types. Appl Clay Sci 49:288–297

    Article  CAS  Google Scholar 

  45. Liu M, Wu C, Jiao Y et al (2013) Chitosan-Halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Matter Chem B 1:2078–2089

    Article  CAS  Google Scholar 

  46. Chang C-W, van Spreeuwel A, Zhang C et al (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Mat 6:5157–5164

    Article  CAS  Google Scholar 

  47. Navarchain AH, Joulazadeh M, Karimi F (2014) Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces. Prog Org Coat 77:347–353

    Article  Google Scholar 

  48. Akbarinezhad E, Ebrahimi M, Sharif F et al (2011) Synthesis and evaluating corrosion protection effects of emeraldine base PAni/clay nanocomposite as a barrier pigment in zinc-rich ethyl silicate primer. Prog Org Coat 70:39–44

    Article  CAS  Google Scholar 

  49. Loyens W, Maurer FHJ, Jannasch P (2005) Melt-compounded salt-containing poly(ethylene oxide)/clay nanocomposites for polymer electrolyte membranes. Polymer 46:7334–7345

    Article  CAS  Google Scholar 

  50. Ratna D, Divekar S, Patchaiappan S et al (2007) Poly(ethylene oxide)/clay nanocomposites for solid polymer electrolyte applications. Polym Int 56:900–904

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Science and Technology and the Council for Scientific and Industrial Research, South Africa for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprakas Sinha Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Bandyopadhyay, J., Ray, S.S. (2017). Applications of Nanoclay-Containing Polymer Nanocomposites. In: Nakato, T., Kawamata, J., Takagi, S. (eds) Inorganic Nanosheets and Nanosheet-Based Materials. Nanostructure Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56496-6_21

Download citation

Publish with us

Policies and ethics