Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

One of the most attractive characteristics of nanosheets and nanosheet-based materials, when being considered as optical materials, is their high anisotropy. Therefore, nanosheets and nanosheet-based materials are suitable as optical materials that require an anisotropic optical response. An essential requirement for the use of a nanosheet as an optical material is the ability to obtain low light-scattering nanosheet-based solid materials. In the first part of this chapter, the preparation techniques for obtaining low light-scattering nanosheet-based solid materials, such as Langmuir–Blodgett, filtration-based, and index matching techniques, are introduced. Then, studies on the optical functionalities of various kinds of nanosheet-based solid materials, such as superlattice and plasmonic nanostructures, are reviewed. Furthermore, efficient nonlinear optical nanosheet-based materials, in which specific characteristics of the nanosheets are ingeniously used, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papaginnouli I, Maratou E, Koutselas I, Couris S (2014) J Phys Chem C 118:2766–2775

    Article  Google Scholar 

  2. Ishihara T, Takahashi J, Goto T (1989) Solid State Commun 69:933–936

    Article  CAS  Google Scholar 

  3. Kato Y, Ichii D, Ohashi K, Kungita H, Ema K, Tanaka K, Takahashi T, Kondo T (2003) Solid State Commun 128:15–18

    Article  CAS  Google Scholar 

  4. Zhang S, Audebert P, Wei Y, Lauret JS, Galmiche L, Deleporte E (2011) J Mater Chem 21:466–476

    Article  CAS  Google Scholar 

  5. Calabrese J, Jones NL, Harlow RL, Herron N, Thorn DL, Wang Y (1991) J Am Chem Soc 113:2328–2330

    Article  CAS  Google Scholar 

  6. Dammak T, Koubaa M, Boukheddaden K, Bougzhala H, Mlayah A, Abid Y (2009) J Phys Chem 113:19305–19309

    CAS  Google Scholar 

  7. Papavassiliou GC, Mousdis GA, Koutselas IB (1999) Adv Mater Opt Electron 9:265–271

    Article  CAS  Google Scholar 

  8. Xu C, Kondo T, Sakakura H, Kumata K, Takahashi Y, Ito R (1991) Solid State Commun 79:245–248

    Article  CAS  Google Scholar 

  9. Li BW, Osada M, Ozawa TC, Ebina Y, Akatsuka K, Ma R, Funakubo H, Sasaki T (2010) ACS Nano 4:6673–6680

    Article  CAS  Google Scholar 

  10. Takenawa R, Komori Y, Hayashi S, Kawamata J, Kuroda K (2001) Chem Mater 13:3741–3746

    Article  CAS  Google Scholar 

  11. Suzuki Y, Matsunaga R, Sato H, Kogure T, Yamagishi A, Kawamata J (2009) Chem Commun 45:6964–6966

    Article  Google Scholar 

  12. Lacroix PG, Clement R, Nakatani K, Zyss J, Ledoux I (1994) Science 263:658–660

    Article  CAS  Google Scholar 

  13. Bénard S, Yu P, Coradin T, Rivière E, Nakatani K, Clément R (1997) Adv Mater 9:981–984

    Article  Google Scholar 

  14. Van der Boom ME, Zhu P, Evmenenko G, Malinsky JE, Lin W, Dutta P, Marks TJ (2002) Langmuir 18:3704–3707

    Article  Google Scholar 

  15. Cariati E, Macchi R, Roberto D, Ugo R, Galli S, Casati N, Macchi P, Sironi A, Bogani L, Caneschi A, Gatteschi D (2007) J Am Chem Soc 129:9410–9420

    Article  CAS  Google Scholar 

  16. Suzuki Y, Tenma Y, Nishioka Y, Kamada K, Ohta K, Kawamata J (2011) J Phys Chem C 115:20653–20661

    Article  CAS  Google Scholar 

  17. Kamada K, Tanamura Y, Ueno K, Ohta K, Misawa H (2007) J Phys Chem C 111:11193–11198

    Article  CAS  Google Scholar 

  18. Suzuki Y, Tenma Y, Nishioka Y, Kawamata J (2012) Chem Asian J 7:1170–1179

    Article  CAS  Google Scholar 

  19. Ishida Y, Shimada T, Takagi S (2014) J Phys Chem C 118:20466–20471

    Article  CAS  Google Scholar 

  20. Petty MC (ed) (1996) Langmuir-Blodgett films an introduction. Cambridge University Press, Cambridge

    Google Scholar 

  21. Inukai K, Hotta Y, Taniguchi M, Tomura S, Yamagishi A (1994) J Chem Soc Chem Commun 959

    Google Scholar 

  22. Kotov NA, Meldrum FC, Fendler JH, Tombacz E, Dekany I (1994) Langmuir 10:3797–3804

    Article  CAS  Google Scholar 

  23. Osada M, Sasaki T (2015) Polymer J 47:89–98

    Article  CAS  Google Scholar 

  24. Higashi T, Yasui R, Tani S, Ogata Y, Yamagushi A, Kawamata J (2006) Clay Sci 12:42–45

    CAS  Google Scholar 

  25. Kawamata J, Seike R, Higashi T, Inada Y, Sasaki J, Ogata Y, Tani S, Yamagishi A (2006) Coll Surf A 284–285:135–139

    Article  Google Scholar 

  26. Kim HJ, Osada M, Ebina Y, Sugimoto W, Tsukagoshi K, Sasaki T (2016) Sci Rep 6:19402

    Article  CAS  Google Scholar 

  27. Shibata T, Takano H, Ebina Y, Kim DS, Ozawa TC, Sasaki T (2014) J Mater Chem C 2:441–449

    Article  CAS  Google Scholar 

  28. Sato H, Tamura K, Taniguchi M, Yamagishi A (2010) New J Chem 34:617–622

    Article  CAS  Google Scholar 

  29. Kuang W, Facey GA, Detellir C, Casal B, Serratosa JM, Ruiz-Hitzky E (2003) Chem Mater 15:4956–4967

    Article  CAS  Google Scholar 

  30. Suzuki Y, Hirakawa S, Sakamoto Y, Kawamata J, Kamada K, Ohta K (2008) Clay Clay Mineral 56:487–493

    Article  CAS  Google Scholar 

  31. Kawamata J, Suzuki Y, Tenma Y (2010) Phil Mag 90:2519–2527

    Article  CAS  Google Scholar 

  32. Ebina T, Mizukami F (2007) Adv Mater 19:2450–2453

    Article  CAS  Google Scholar 

  33. Kawasaki K, Ebina T, Mizukami F, Tsuda H, Motegi K (2010) Appl Clay Sci 48:111–116

    Article  CAS  Google Scholar 

  34. Stöter M, Biersack B, Rosenfeldt S, Leitl MJ, Kalo Schobert H R, Yersin H, Ozin GA, Förster S, Breu J (2015) Angew. Chem Int Ed 54:4963–4967

    Article  Google Scholar 

  35. Wu CN, Yang Q, Takeuchi M, Saito T, Isogai A (2014) Nanoscale 6:392–399

    Article  CAS  Google Scholar 

  36. Haraguchi K, Takehisa T, Fan S (2002) Macromolecules 35:10162–10171

    Article  CAS  Google Scholar 

  37. Osada M, Hajduková-Smídová N, Akatsuka K, Yoguchi S, Sasaki T (2013) J Mater Chem C 1:2520–2524

    Article  CAS  Google Scholar 

  38. Arakawa Y, Sasaki H (1982) Appl Phys Lett 40:939–941

    Article  CAS  Google Scholar 

  39. Schultheis L, Sturge MD, Hegarty J (1985) Appl Phys Lett 47:995–997

    Article  CAS  Google Scholar 

  40. Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY (1994) Science 264:553–556

    Article  CAS  Google Scholar 

  41. Zhang S, Lanty G, Lauret JS, Deleporte E, Audebert P, Galmiche L (2009) Acta Mater 57:3301–3309

    Article  CAS  Google Scholar 

  42. Jovanovic VD, Indjin D, Vukmirovic N, Iknic Z, Harrison P, Linfield EH, Page H, Marcadet X, Sirtori C, Worrall C, Beere HE, Ritchie DA (2005) Appl Phys Lett 86:211117

    Article  Google Scholar 

  43. Feng M, Zhan H, Chen Y (2010) Appl Phys Lett 96:033107

    Article  Google Scholar 

  44. Song W, He C, Dong Y, Zhang W, Gao Y, Wu Y, Chen Z (2015) Phys Chem Chem Phys 17:7149–7157

    Article  CAS  Google Scholar 

  45. Tan D, Liu X, Dai Y, Ma G, Menuier M, Qiu J (2015) Adv Optical Mater 3:836–841

    Article  CAS  Google Scholar 

  46. Anand B, Kaniyoor A, Sai SSS, Philip R, Ramaprabhu S (2013) J Mater Chem C 1:2773–2780

    Article  CAS  Google Scholar 

  47. Ma F, Zhou ZJJ, Liu YT, Zhang YZ, Miao TF, Li ZR (2011) Chem Phys Lett 504:211–215

    Article  CAS  Google Scholar 

  48. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N (2008) Nat Nanotechnol 3:563–568

    Google Scholar 

  49. Murugan AV, Muraliganth T, Manthiram A (2009) Chem Mater 21:5004–5006

    Article  CAS  Google Scholar 

  50. Kalanoor BS, Bisht PB, Ali SA, Baby TT (2012) Ramaprabhu S (2012). J Opt Soc Am B 29:669–675

    Article  CAS  Google Scholar 

  51. Anand B, Kaniyoor A, Swain D, Baby TT, Venugopal Rao S, Sai SSS, Ramaprabhu S, Philip R (2014) J Mater Chem C 2:10116–10123

    Article  CAS  Google Scholar 

  52. Kavitha MK, John H, Gopinath P, Philip R (2013) J Mater Chem C 1:3669–3676

    Article  CAS  Google Scholar 

  53. Günter P (ed) (2002) Nonlinear Optical Effects and Materials. Springer, Berlin

    Google Scholar 

  54. Rumi M, Ehrlich JE, Heikal AS, Perry JW, Barlow S, Hu Z, McCord-Maughon D, Parker TC, Röckel H, Thayumanavan S, Marder SR, Beljonne D, Brédas JL (2000) J Am Chem Soc 122:9500–9510

    Article  CAS  Google Scholar 

  55. Takagi S, Shimada T, Eguchi M, Yui T, Yoshida H, Tryk DA, Inoue H (2002) Langmuir 18:2265–2272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Kawamata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Suzuki, Y., Kawamata, J. (2017). Optical Materials. In: Nakato, T., Kawamata, J., Takagi, S. (eds) Inorganic Nanosheets and Nanosheet-Based Materials. Nanostructure Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56496-6_19

Download citation

Publish with us

Policies and ethics