Skip to main content

Photofunctional Nanosheet-Based Hybrids

  • Chapter
  • First Online:
Inorganic Nanosheets and Nanosheet-Based Materials

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1671 Accesses

Abstract

In this chapter, we introduce the applications of 2D inorganic nanosheets as effective building blocks for photofunctional hybrids with inorganic, organic, bio-, and polymer species. Among many nanostructured materials, the 2D inorganic nanosheets prepared by soft-chemical exfoliation reaction are quite unique in terms of unusually high anisotropy in their crystal structure/morphology, large surface area, and great diversity in their chemical compositions and physicochemical properties. These characteristics of 2D nanosheets render them very useful candidates for the synthesis of nanohybrid material with unique physicochemical properties. Novel hybridization strategies such as electrostatically derived reassembling, layer-by-layer deposition, and crystal growth on the surface sites of nanosheets have been intensively investigated as effective synthetic routes to functional nanosheet-based hybrid materials. This chapter puts an emphasis on the unique physicochemical properties and unexpected photofunctionalities of the nanosheet-based hybrid materials as results of synergistic strong coupling between the hybridized components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gunjakar JL, Kim IY, Lee JM et al (2014) Exploration of nanostructured functional materials based on hybridization of inorganic 2D nanosheets. J Phys Chem C 118:3847–3863

    Article  CAS  Google Scholar 

  2. Kim IY, Jo YK, Lee JM et al (2014) Unique advantages of exfoliated 2D nanosheets for tailoring the functionalities of nanocomposites. J Phys Chem Lett 5:4149–4161

    Article  CAS  Google Scholar 

  3. Tran PD, Wong LH, Barber J et al (2012) Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ Sci 5:5902–5918

    Article  CAS  Google Scholar 

  4. Kim H, Kim J, Kim W et al (2011) Enhanced photocatalytic and photoelectrochemical activity in the ternary hybrid of CdS/TiO2/WO3 through the cascadal electron transfer. J Phys Chem C 115:9797–9805

    Article  CAS  Google Scholar 

  5. Sekizawa K, Maeda K, Domen K et al (2013) Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. J Am Chem Soc 135:4596–4599

    Article  CAS  Google Scholar 

  6. Kim S-J, Kim IY, Patil SB et al (2014) Composition-tailored 2D Mn1−xRuxO2 nanosheets and their reassembled nanocomposites: improvement of electrode performance upon Ru substitution. Chem Eur J 20:5132–5140

    Article  CAS  Google Scholar 

  7. Oh E-J, Kim TW, Lee KM et al (2010) Unilamellar nanosheet of layered manganese cobalt nickel oxide and its heterolayered film with polycations. ACS Nano 4:4437–4444

    Article  CAS  Google Scholar 

  8. Ataca C, Sahin H, Ciraci S (2012) Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C 116:8983–8999

    Article  CAS  Google Scholar 

  9. Sasaki T, Watanabe M (1998) Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate. J Am Chem Soc 120:4682–4689

    Article  CAS  Google Scholar 

  10. Jo YK, Kim IY, Gunjakar JL et al (2014) Unique properties of 2D layered titanate nanosheets as a building block for the optimization of the photocatalytic activity and photostability of TiO2-based nanohybrids. Chem Eur J 20:10011–10019

    Article  CAS  Google Scholar 

  11. Park D-H, Hwang S-J, Oh J-M et al (2013) Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Prog Polym Sci 38:1442–1486

    Article  CAS  Google Scholar 

  12. Choy J-H (2004) Intercalative route to heterostructured nanohybrids. J Phys Chem Sol 65:373–383

    Article  CAS  Google Scholar 

  13. Paek SM, Jung H, Lee YJ et al (2006) Exfoliation and reassembling route to mesoporous titania nanohybrids. Chem Mater 18:1134–1140

    Article  CAS  Google Scholar 

  14. Kim IY, Lee KY, Kim TW et al (2011) Porous zirconium complex-layered titanate nanohybrids with gas adsorption and photocatalytic activity. Mater Lett 65:894–896

    Article  CAS  Google Scholar 

  15. Kim TW, Hwang SJ, Park Y et al (2007) Chemical bonding character and physicochemical properties of mesoporous zinc oxide-layered titanate nanocomposites. J Phys Chem C 111:1658–1664

    Article  CAS  Google Scholar 

  16. Lee JM, Jin HB, Kim IY et al (2015) A crucial role of Rh substituent ion in photoinduced internal electron transfer and enhanced photocatalytic activity of CdS-Ti(5.2−x)/6Rhx/2O2 nanohybrids. Small 11:5771–5780

    Article  CAS  Google Scholar 

  17. Liu G, Wang L, Sun C et al (2009) Nitrogen-doped titania nanosheets towards visible light response. Chem Commun 1383–1385

    Google Scholar 

  18. Osada M, Takanashi G, Li B-W et al (2011) Controlled polarizability of one-nanometer-thick oxide nanosheets for tailored, high-k nanodielectrics. Adv Funct Mater 21:3482–3487

    Article  CAS  Google Scholar 

  19. Osada M, Sasaki T, Ono K et al (2011) Orbital reconstruction and interface ferromagnetism in self-assembled nanosheet superlattices. ACS Nano 5:6871–6879

    Article  CAS  Google Scholar 

  20. Kim TW, Hur SG, Hwang SJ et al (2007) Heterostructured visible-light-active photocatalyst of chromia-nanoparticle-layered titanate. Adv Funct Mater 17:307–314

    Article  CAS  Google Scholar 

  21. Kim TW, Hur SG, Hwang S-J et al (2006) Layered titanate-zinc oxide nanohybrids with mesoporosity. Chem Commun 220–222

    Google Scholar 

  22. Gunjakar JL, Kim TW, Kim HN et al (2011) Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability. J Am Chem Soc 133:14998–15007

    Article  CAS  Google Scholar 

  23. Kim TW, Ha H-W, Paek M-J et al (2010) Unique phase transformation behavior and visible light photocatalytic activity of titanium oxide hybridized with copper oxide. J Mater Chem 20:3238–3245

    Article  CAS  Google Scholar 

  24. Gunjakar JL, Kim TW, Kim IY et al (2013) Highly efficient visible light-induced O2 generation by self-assembled nanohybrids of inorganic nanosheets and polyoxometalate nanoclusters. Sci Rep 3:2080

    Article  Google Scholar 

  25. Kim TW, Hwang SJ, Jhung SH et al (2008) Bifunctional heterogeneous catalysts for selective epoxidation and visible light driven photolysis: nickel oxide-containing porous nanocomposite. Adv Mater 20:539–542

    Article  CAS  Google Scholar 

  26. Kim TW, Ha HW, Paek M-J et al (2008) Mesoporous iron oxide-layered titanate nanohybrids: soft-chemical synthesis, characterization, and photocatalyst application. J Phys Chem C 112:14853–14862

    Article  CAS  Google Scholar 

  27. Osada M, Sasaki T (2012) Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv Mater 24:210–228

    Article  CAS  Google Scholar 

  28. Wang L, Sasaki T (2014) Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem Rev 114:9455–9486

    Article  CAS  Google Scholar 

  29. Jang ES, Chang JJ, Gwak J et al (2007) Asymmetric high-Tc superconducting gas separation membrane. Chem Mater 19:3840–3844

    Article  CAS  Google Scholar 

  30. Fukuda K, Sato J, Saida T et al (2013) Fabrication of ruthenium metal nanosheets via topotactic metallization of exfoliated ruthenate nanosheets. Inorg Chem 52:2280–2282

    Article  CAS  Google Scholar 

  31. Walter MG, Warren EL, McKone JR et al (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  CAS  Google Scholar 

  32. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  33. Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320

    Article  CAS  Google Scholar 

  34. Schaak RE, Mallouk TE (2000) Prying apart ruddlesden-popper phases: exfoliation into sheets and nanotubes for assembly of perovskite thin films. Chem Mater 12:3427–3434

    Article  CAS  Google Scholar 

  35. Rostamzadeh T, Adireddy S, Wiley JB (2015) Formation of scrolled silver vanadate nanopeapods by both capture and insertion strategies. Chem Mater 27:3694–3699

    Article  CAS  Google Scholar 

  36. Yao Y, Chaubey GS, Wiley JB (2012) Fabrication of nanopeapods: scrolling of niobate nanosheets for magnetic nanoparticle chain encapsulation. J Am Chem Soc 134:2450–2452

    Article  CAS  Google Scholar 

  37. Ma R, Liu Z, Li L et al (2006) Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets. J Mater Chem 16:3809–3813

    Article  CAS  Google Scholar 

  38. Shibata T, Takanashi G, Nakamura T et al (2011) Titanoniobate and niobate nanosheet photocatalysts: superior photoinduced hydrophilicity and enhanced thermal stability of unilamellar Nb3O8 nanosheet. Energy Environ Sci 4:535–542

    Article  CAS  Google Scholar 

  39. Akatsuka K, Takanashi G, Ebina Y et al (2012) Electronic band structure of exfoliated titanium- and/or niobium-based oxide nanosheets probed by electrochemical and photoelectrochemical measurements. J Phys Chem C 116:12426–12433

    Article  CAS  Google Scholar 

  40. Jung TS, Kim TW, Hwang SJ (2009) Mesoporous assembly of layered titanate with well-dispersed Pt cocatalyst. Bull Korean Chem Soc 30:449–453

    Article  CAS  Google Scholar 

  41. Kim TW, Kim IY, Im JH et al (2009) Improved photocatalytic activity and adsorption ability of mesoporous potassium-intercalated layered titanate. J Photochem Photobiol A: Chem 205:173–178

    Article  CAS  Google Scholar 

  42. Park S, Lee JM, Jo YK et al (2014) A facile exfoliation-crystal growth route to multicomponent Ag2CO3/Ag-Ti5NbO14 nanohybrids with improved visible light photocatalytic activity. Dalton Trans 43:10566–10573

    Article  CAS  Google Scholar 

  43. Kim HN, Kim TW, Kim IY et al (2011) Cocatalyst-free photocatalysts for efficient visible-light-induced H2 production: porous assemblies of CdS quantum dots and layered titanate nanosheets. Adv Funct Mater 21:3111–3118

    Article  CAS  Google Scholar 

  44. Fu J, Li G, Xi F et al (2012) Hybrid nanocomposite with visible-light photocatalytic activity: CdS–pillared titanate. Chem Engineer J 180:330–336

    Article  CAS  Google Scholar 

  45. Zhang KZ, Lin BZ, Chen YL et al (2011) Fe-doped and ZnO-pillared titanates as visible-light-driven photocatalysts. J Colloid Interface Sci 358:360–368

    Article  CAS  Google Scholar 

  46. Chen ZJ, Linn BZ, Chen YL et al (2010) Pillaring and photocatalytic properties of mesoporous α-Fe2O3/titanate nanocomposites via an exfoliation and restacking route. J Phys Chem Solids 71:841–847

    Article  CAS  Google Scholar 

  47. Liu H, Lin B, He L et al (2013) Mesoporous cobalt-intercalated layered tetratitanate for efficient visible-light photocatalysis. Chem Engineer J 215–216:396–403

    Article  Google Scholar 

  48. Li B, Lin BZ, Zhang O et al (2012) Heterostructured tin oxide-pillared tetratitanate with enhanced photocatalytic activity. J Colloid Interface Sci 386:1–8

    Article  CAS  Google Scholar 

  49. Kang JH, Yeo HJ, Jeong JH (2012) Titania-pillared molybdenum oxide as a new nanoporous photocatalyst. J Phys Chem Solids 73:1469–1472

    Article  CAS  Google Scholar 

  50. Wang Q, Lin BZ, Xu BH et al (2010) Preparation and photocatalytic properties of mesoporous SnO2–hexaniobate layered nanocomposite. Microporous Mesoporous Mater 130:344–351

    Article  CAS  Google Scholar 

  51. Li X, Zhang T, Gu S et al (2013) Reduced graphene oxide/potassium niobate composite nanoscrolls with enhanced photocatalytic activity for dye degradation. Sep Purif Technol 108:139–142

    Article  CAS  Google Scholar 

  52. Lin BZ, Li XL, Xu BH et al (2012) Improved photocatalytic activity of anatase TiO2-pillared HTaWO6 for degradation of methylene blue. Microporous Mesoporous Mater 155:16–23

    Article  CAS  Google Scholar 

  53. Pian XT, Lin BZ, Chen YL et al (2011) Pillared nanocomposite TiO2/Bi-doped hexaniobate with visible-light photocatalytic activity. J Phys Chem C 115:6531–6539

    Article  CAS  Google Scholar 

  54. Lin B, He L, Zhu B et al (2012) Visible-light photocatalytic activity of mesoporous nanohybrid assembled by tantalotungstate nanosheets and manganese ions. Catal Commun 29:166–169

    Article  CAS  Google Scholar 

  55. Yui T, Mori Y, Tsuchino T et al (2005) Synthesis of photofunctional titania nanosheets by electrophoretic deposition. Chem Mater 17:206–211

    Article  CAS  Google Scholar 

  56. Haryanto A, Fernando S, Murali N (2005) Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuel 19:2098–2106

    Article  CAS  Google Scholar 

  57. Kochuveedu ST, Jang YH, Kim DH (2013) A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem Soc Rev 42:8467–8493

    Article  CAS  Google Scholar 

  58. Gong J, Liang J, Sumathy K (2012) Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renew Sustain Energy Rev 16:5848–5860

    Article  CAS  Google Scholar 

  59. Paek SM, Jung H, Lee YJ et al (2006) Nanostructured TiO2 films for dye-sensitized solar cells. J Phys Chem Solids 67:1308–1311

    Article  CAS  Google Scholar 

  60. Seger B, McCray J, Mukherji A et al (2013) An n-type to p-type switchable photoelectrode assembled from alternating exfoliated titania nanosheets and polyaniline layers. Angew Chem Int Ed 52:6400–6403

    Article  CAS  Google Scholar 

  61. Ozawa TC, Fukuda K, Akatsuka K et al (2006) Preparation and characterization of the Eu3+ doped perovskite nanosheet phosphor: La0.90Eu0.05Nb2O7. Chem Mater 19:6575–6580

    Article  Google Scholar 

  62. Ozawa TC, Fukuda K, Akatsuka K et al (2008) Eu0.56Ta2O7: A new nanosheet phosphor with the high intrananosheet site photoactivator concentration. J Phys Chem C 112:1312–1315

    Article  CAS  Google Scholar 

  63. Ozawa TC, Fukuda K, Akatsuka K et al (2008) (K1.5Eu0.5)Ta3O10: a far-red luminescent nanosheet phosphor with the double perovskite structure. J Phys Chem C 112:17115–17120

    Article  CAS  Google Scholar 

  64. Ida S, Ogata C, Eguchi M et al (2008) Photoluminescence of perovskite nanosheets prepared by exfoliation of layered oxides, K2Ln2Ti3O10, KLnNb2O7, and RbLnTa2O7 (Ln: Lanthanide Ion). J Am Chem Soc 130:7052–7059

    Article  CAS  Google Scholar 

  65. Ida S, Ogata C, Unal U et al (2007) Preparation of a blue luminescent nanosheet derived from layered perovskite Bi2SrTa2O9. J Am Chem Soc 129:8956–8957

    Article  CAS  Google Scholar 

  66. Ozawa TC, Fukuda K, Akatsuka K et al (2009) Enhancement of host excitation-mediated photoluminescence and preferential quenching of direct photoactivator excitation-mediated photoluminescence by exfoliation of layered KLa0.90Sm0.05Nb2O7 into La0.90Sm0.05Nb2O7 Nanosheets. J Phys Chem C 113:8735–8742

    Article  CAS  Google Scholar 

  67. Xin H, Ma R, Wang L et al (2004) Photoluminescence properties of lamellar aggregates of titania nanosheets accommodating rare earth ions. Appl Phys Lett 85:4187–4189

    Article  CAS  Google Scholar 

  68. Xin H, Ebina Y, Ma R et al (2006) Thermally stable luminescent composites fabricated by confining rare earth complexes in the two-dimensional gallery of titania nanosheets and their photophysical properties. J Phys Chem B 110:9863–9868

    Article  CAS  Google Scholar 

  69. Matsumoto Y, Unal U, Kimura Y et al (2005) Synthesis and photoluminescent properties of titanate layered oxides intercalated with lanthanide cations by electrostatic self-assembly methods. J Phys Chem B 109:12748–12754

    Article  CAS  Google Scholar 

  70. Ida S, Araki K, Unal U et al (2006) Photoluminescence properties of multilayer oxide films intercalated with rare earth ions by the layer-by-layer technique. Chem Commun 3619–3621

    Google Scholar 

  71. Ida S, Unal U, Izawa K et al (2006) Photoluminescence spectral change in layered titanate oxide intercalated with hydrated Eu3+. J Phys Chem B 110:23881–23887

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Ju Hwang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Gunjakar, J.L., Kim, I.Y., Hwang, SJ. (2017). Photofunctional Nanosheet-Based Hybrids. In: Nakato, T., Kawamata, J., Takagi, S. (eds) Inorganic Nanosheets and Nanosheet-Based Materials. Nanostructure Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56496-6_15

Download citation

Publish with us

Policies and ethics