Skip to main content

Photoenergy Conversion

  • Chapter
  • First Online:
Inorganic Nanosheets and Nanosheet-Based Materials

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1658 Accesses

Abstract

This chapter briefly reviews the use of inorganic nanosheets for a conversion of photoenergy into other forms of energies such as chemical, electrical, mechanical, and photoenergy. Some representative works have achieved efficient photoenergy conversion as well as the effective utilization of unique advantages of two-dimensional nanosheets such as highly crystalline two-dimensional surfaces, high aspect ratios, and the separation of the front and back sides by atomically thin surfaces. Since the modern world is highly reliant on energies in various forms, novel and more efficient energy conversion systems using inorganic nanosheets are desired toward future sustainable society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320

    Article  CAS  Google Scholar 

  3. Wang L, Sasaki T (2014) Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem Rev 114:9455–9486

    Article  CAS  Google Scholar 

  4. Paek S-M, Jung H, Lee Y-J, Park M, Hwang S-J, Choy J-H (2006) Exfoliation and reassembling route to mesoporous titania nanohybrids. Chem Mater 18:1134–1140

    Article  CAS  Google Scholar 

  5. Liu G, Wang L, Sun C, Chen Z, Yan X, Cheng L et al (2009) Nitrogen-doped titania nanosheets towards visible light response. Chem Commun 1383–1383

    Google Scholar 

  6. Allen MR, Thibert A, Sabio EM, Browning ND, Larsen DS, Osterloh FE (2010) Evolution of physical and photocatalytic properties in the layered titanates A2Ti4O9 (A = K, H) and in nanosheets derived by chemical exfoliation. Chem Mater 22:1220–1228

    Article  CAS  Google Scholar 

  7. Domen K, Kudo A, Shibata M, Tanaka A, Maruya KI, Onishi T (1986) Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure. J Chem Soc Chem Commun 1706–1712

    Google Scholar 

  8. Sayama K, Tanaka A, Domen K (1991) Photocatalytic decomposition of water over platinum-intercalated potassium niobate (K4Nb6O17). J Phys Chem 95:1345–1348

    Article  CAS  Google Scholar 

  9. Compton OC, Mullet CH, Chiang S, Osterloh FE (2008) A building block approach to photochemical water-splitting catalysts based on layered niobate nanosheets. J Phys Chem C 112:6202–6208

    Article  CAS  Google Scholar 

  10. Tan B, Wu Y (2006) Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J Phys Chem B 110:15932–15938

    Article  CAS  Google Scholar 

  11. Akatsuka K, Ebina Y, Muramatsu M, Sato T, Hester H, Kumaresan D et al (2007) Photoelectrochemical properties of alternating multilayer films composed of titania nanosheets and Zn porphyrin. Langmuir 23:6730–6736

    Article  CAS  Google Scholar 

  12. Akatsuka K, Takanashi G, Ebina Y, Haga M-A, Sasaki T (2012) Electronic band structure of exfoliated titanium- and/or niobium-based oxide nanosheets probed by electrochemical and photoelectrochemical measurements. J Phys Chem C 116:12426–12433

    Article  CAS  Google Scholar 

  13. Irie M, Kobatake S, Horichi M (2001) Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation. Science 291:1769–1772

    Article  CAS  Google Scholar 

  14. Yu Y, Nakano M, Ikeda T (2003) Directed bending of a polymer film by light. Nature 425:145–145

    Article  CAS  Google Scholar 

  15. Nabetani Y, Takamura H, Hayasaka Y, Shimada T, Takagi S, Tachibana H et al (2011) A photoactivated artificial muscle model unit: reversible, photoinduced sliding of nanosheets. J Am Chem Soc 133:17130–17133

    Article  CAS  Google Scholar 

  16. Nabetani Y, Takamura H, Hayasaka Y, Sasamoto S, Tanamura Y, Shimada T et al (2013) An artificial muscle model unit based on inorganic nanosheet sliding by photochemical reaction. Nanoscale 5:3182

    Article  CAS  Google Scholar 

  17. Perrin JB (1924) Fluorescence et lois générales relatives aux vitesses de réaction. Comptes rendus hebdomadaires des séances de l’Académie des Sci 178:1401–1406

    CAS  Google Scholar 

  18. Förster Th (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 6:166–175

    Article  Google Scholar 

  19. Förster Th (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 1–2:55–75

    Article  Google Scholar 

  20. Baumann J, Fayer MD (1986) Excitation transfer in disordered two-dimensional and anisotropic three-dimensional systems: effects of spatial geometry on time-resolved observables. J Chem Phys 85:4087

    Article  CAS  Google Scholar 

  21. Kelley RF, Lee SJ, Wilson TM, Nakamura Y, Tiede DM, Osuka A et al (2008) Intramolecular energy transfer within butadiyne-linked chlorophyll and porphyrin dimer-faced, self-assembled prisms. J Am Chem Soc 130:4277–4284

    Article  CAS  Google Scholar 

  22. Hoffman JB, Choi H, Kamat PV (2014) Size-dependent energy transfer pathways in cdse quantum dot-squaraine light-harvesting assemblies: förster versus dexter. J Phys Chem C 118:18453–18461

    Article  CAS  Google Scholar 

  23. Zhang X, Marocico CA, Lunz M, Gerard VA, Gun’ko YK, Lesnyak V et al (2014) Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled förster resonance energy transfer. ACS Nano 8:1273–1283

    Google Scholar 

  24. Becker K, Lupton JM, Müller J, Rogach AL, Talapin DV, Weller H et al (2006) Electrical control of Förster energy transfer. Nat Mater 5:777–781

    Article  CAS  Google Scholar 

  25. Inagaki S, Ohtani O, Goto Y, Okamoto K, Ikai M, Yamanaka K-I et al (2009) Light harvesting by a periodic mesoporous organosilica chromophore. Angew Chem Int Ed 48:4042–4046

    Article  CAS  Google Scholar 

  26. Hildebrandt N, Wegner KD, Algar WR (2014) Luminescent terbium complexes: superior Förster resonance energy transfer donors for flexible and sensitive multiplexed biosensing. Coord Chem Rev 273–274:125–138

    Article  Google Scholar 

  27. Frischmann PD, Mahata K, Würthner F (2013) Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem Soc Rev 42:1847–1870

    Article  CAS  Google Scholar 

  28. Silvi S, Credi A (2015) Luminescent sensors based on quantum dot-molecule conjugates. Chem Soc Rev 44:4275–4289

    Article  CAS  Google Scholar 

  29. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ et al (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521

    Article  CAS  Google Scholar 

  30. Takagi S, Tryk DA, Inoue H (2002) Photochemical energy transfer of cationic porphyrin complexes on clay surface. J Phys Chem B 106:5455–5460

    Article  CAS  Google Scholar 

  31. Ishida Y, Shimada T, Takagi S (2014) Surface-fixation induced emission of porphyrazine dye by a complexation with inorganic nanosheets. J Phys Chem C 118:20466–20471

    Article  CAS  Google Scholar 

  32. Villemure G, Detellier C, Szabo AG (1986) Fluorescence of clay-intercalated methylviologen. J Am Chem Soc 108:4658–4659

    Article  CAS  Google Scholar 

  33. Shichi T, Takagi K (2000) Clay minerals as photochemical reaction fields. J Photochem Photobiol C Photochem Rev 1:113–130

    Article  CAS  Google Scholar 

  34. Bujdák J (2006) Effect of the layer charge of clay minerals on optical properties of organic dyes. A review. Appl Clay Sci 34:58–73

    Article  Google Scholar 

  35. Ghosh PK, Bard AJ (1984) Photochemistry of tris (2, 2′-bipyridyl) ruthenium (II) in colloidal clay suspensions. J Phys Chem 88:5519–5526

    Article  CAS  Google Scholar 

  36. Takagi S, Shimada T, Eguchi M, Yui T, Yoshida H, Tryk DA et al (2002) High-density adsorption of cationic porphyrins on clay layer surfaces without aggregation: the size-matching effect. Langmuir 18:2265–2272

    Article  CAS  Google Scholar 

  37. Takagi S, Shimada T, Ishida Y, Fujimura T, Masui D, Tachibana H et al (2013) Size-matching effect on inorganic nanosheets: control of distance, alignment, and orientation of molecular adsorption as a bottom-up methodology for nanomaterials. Langmuir 29:2108–2119

    Article  CAS  Google Scholar 

  38. Ishida Y, Shimada T, Masui D, Tachibana H, Inoue H, Takagi S (2011) Efficient excited energy transfer reaction in clay/porphyrin complex toward an artificial light-harvesting system. J Am Chem Soc 133:14280–14286

    Article  CAS  Google Scholar 

  39. Ishida Y, Kulasekharan R, Shimada T, Ramamurthy V, Takagi S (2014) Supramolecular-surface photochemistry: supramolecular assembly organized on a clay surface facilitates energy transfer between an encapsulated donor and a free acceptor. J Phys Chem C 118:10198–10203

    Article  CAS  Google Scholar 

  40. Ishida Y, Kulasekharan R, Shimada T, Takagi S, Ramamurthy V (2013) Efficient singlet-singlet energy transfer in a novel host-guest assembly composed of an organic cavitand, aromatic molecules, and a clay nanosheet. Langmuir 29:1748–1753

    Article  CAS  Google Scholar 

  41. Kulasekharan R, Ramamurthy V (2011) New water-soluble organic capsules are effective in controlling excited-state processes of guest molecules. Org Lett 13:5092–5095

    Article  CAS  Google Scholar 

  42. Ishida Y, Shimada T, Takagi S (2013) Artificial light-harvesting model in a self-assembly composed of cationic dyes and inorganic nanosheet. J Phys Chem C 117:9154–9163

    Article  CAS  Google Scholar 

  43. Ishida Y, Shimada T, Tachibana H, Inoue H, Takagi S (2012) Regulation of the collisional self-quenching of fluorescence in clay/porphyrin complex by strong host-guest interaction. J Phys Chem A 116:12065–12072

    Article  CAS  Google Scholar 

  44. Ishida Y, Fujimura T, Masui D, Shimada T, Tachibana H, Inoue H et al (2011) What lowers the efficiency of an energy transfer reaction between porphyrin dyes on clay surface? Clay Sci 15:169–174

    CAS  Google Scholar 

  45. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777

    Article  CAS  Google Scholar 

  46. Morales-Narváez E, Merkoçi A (2012) Graphene oxide as an optical biosensing platform. Adv Mater 24:3298–3308

    Article  Google Scholar 

  47. Piao Y, Liu F, Seo TS (2011) The photoluminescent graphene oxide serves as an acceptor rather than a donor in the fluorescence resonance energy transfer pair of Cy3.5-graphene oxide. Chem Commun 47:12149–12151

    Article  CAS  Google Scholar 

  48. Liu F, Choi JY, Seo TS (2010) Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosens Bioelectron 25:2361–2365

    Article  CAS  Google Scholar 

  49. Balapanuru J, Yang J-X, Xiao S, Bao Q, Jahan M, Polavarapu L et al (2010) A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew Chem Int Ed 49:6549–6553

    Article  CAS  Google Scholar 

  50. Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82:5511–5517

    Article  CAS  Google Scholar 

  51. Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998–6001

    Article  CAS  Google Scholar 

  52. Ha HD, Han DJ, Choi JS, Park M, Seo TS (2014) Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon. Small 10:3858–3862

    Article  CAS  Google Scholar 

  53. Scheuschner N, Ochedowski O, Kaulitz A-M, Gillen R, Schleberger M, Maultzsch J (2014) Photoluminescence of freestanding single- and few-layer MoS2. Phys Rev B 89:125406

    Article  Google Scholar 

  54. Prins F, Goodman AJ, Tisdale WA (2014) Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2. Nano Lett 14:6087–6091

    Article  CAS  Google Scholar 

  55. Wang Q, Wang W, Lei J, Xu N, Gao F, Ju H (2013) Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal Chem 85:12182–12188

    Article  CAS  Google Scholar 

  56. Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J et al (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209–3215

    Article  CAS  Google Scholar 

  57. Sakamoto J, van Heijst J, Lukin O, Schlüter AD (2009) Two-dimensional polymers: just a dream of synthetic chemists? Angew Chem Int Ed 48:1030–1069

    Article  CAS  Google Scholar 

  58. Sakamoto R, Takada K, Sun X, Pal T, Tsukamoto T, Phua EJH et al (2016) The coordination nanosheet (CONASH). Coordin Chem Rev 320–321:118–128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Takagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Ishida, Y., Takagi, S. (2017). Photoenergy Conversion. In: Nakato, T., Kawamata, J., Takagi, S. (eds) Inorganic Nanosheets and Nanosheet-Based Materials. Nanostructure Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56496-6_14

Download citation

Publish with us

Policies and ethics