Skip to main content

Ecosystem Processes of Ferralsols and Acrisols in Forest-Soil Systems of Cameroon

  • Chapter
  • First Online:
Soils, Ecosystem Processes, and Agricultural Development
  • 704 Accesses

Abstract

Tropical African forests are dominated by Ferralsols and leguminous species, while Southeast Asian forests are dominated by Acrisols/Alisols and Dipterocarpaceae. Hence, their ecological processes can differ, depending on soil acidity and nitrogen (N) availability. To provide an overview of the carbon (C) and N dynamics, as well as soil acidification processes on Ferralsols and Acrisols, in tropical African forests, we quantified soil respiration and element fluxes through different flow paths (as precipitation, throughfall, litterfall, litter leachate, and soil solutions) and analyzed proton budgets in two secondary forested sites in Cameroon. Our results demonstrate that at Mvam Village (MV; Acrisols), N was mostly taken up within the O horizon, which has a dense root mat, while half of the input N leached down to the mineral horizon at the Andom Village (AD; Ferralsols) site. Nitrification was the main proton-generating process in the canopy and the O horizon of AD, and it caused a large amount of cation leaching, which resulted in the accumulation of basic cations because of the high proton consumption rates in the A horizon. In contrast, because of the dense root mat at MV, the excess cation uptake by plants in the O horizon made the largest contribution to proton generation, which resulted in intensive acidification of the surface soil. Our results suggest that ecosystem processes differ depending on soil type (i.e., soil acidity). Thus, legumes growing on Ferralsols in tropical African forests have unique plant-soil interactions via active nitrification in the O horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber JD, Melillo JM, Nadelhoffer KJ, McClaugherty CA, Pastor J (1985) Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia 66:317–321

    Article  Google Scholar 

  • Alves LF, Vieira SA, Scaranello MA, Camargo PB, Santos FAM, Joly CA, Martinelli LA (2010) Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For Ecol Manag 260:679–691

    Article  Google Scholar 

  • Asner GP, Martin RE, Ford AJ, Metcalfe DJ, Liddell MJ (2009) Leaf chemical and spectral diversity in Australian tropical forests. Ecol Appl 19(1):236–253

    Article  Google Scholar 

  • Asner G, Martin R, Suhaili A (2012) Sources of canopy chemical and spectral diversity in lowland Bornean forest. Ecosystems 15(3):504–517

    Article  CAS  Google Scholar 

  • Asner GP, Martin RE, Tupayachi R, Anderson CB, Sinca F, Carranza–Jiménez L, Martinez P (2014) Amazonian functional diversity from forest canopy chemical assembly. Proc Natl Acad Sci U S A 111(15):5604–5609

    Article  CAS  Google Scholar 

  • Binkley D, Richter D (1987) Nutrient cycles and H+ budgets of forest ecosystems. Adv Ecol Res 16:2–51

    Google Scholar 

  • Campbell JL, Hornbeck JW, McDowell WH, Buso DC, Shanley JB, Likens GE (2000) Dissolved organic nitrogen budgets for upland, forested ecosystems in New England. Biogeochemistry 49:123–142

    Article  CAS  Google Scholar 

  • Chandler G (1985) Mineralization and nitrification in three Malaysian forest soils. Soil Biol Biochem 17(3):347–353

    Article  CAS  Google Scholar 

  • Crews T (1999) The presence of nitrogen fixing legumes in terrestrial communities: evolutionary vs ecological considerations. Biogeochemistry 46:233–246

    CAS  Google Scholar 

  • Davidson EA, Hart SC, Firestone MK (1992) Internal cycling of nitrate in soils of a mature coniferous forest. Ecology 73:1148–1156

    Article  Google Scholar 

  • De Graaf MCC, Bobbink R, Verbeek PJM, Roelofs JGM (1997) Aluminium toxicity and tolerance in three heathland species. Water Air Soil Pollut 98:229–239

    CAS  Google Scholar 

  • Dezzeo N, Chacón N (2006) Nutrient fluxes in incident rainfall, throughfall, and stemflow in adjacent primary and secondary forests of the Gran Sabana, southern Venezuela. For Ecol Manag 234:218–226

    Article  Google Scholar 

  • Diabate M, Munive A, de Faria SM, Ba A, Dreyfus B, Galiana A (2005) Occurrence of nodulation in unexplored leguminous trees native to the West African tropical rainforest and inoculation response of native species useful in reforestation. New Phytol 166:231–239

    Article  Google Scholar 

  • Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910

    Article  CAS  Google Scholar 

  • Freycon V, Wonkam C, Fayolle A, Laclau JP, Lucot E, Jourdan C, Cornu G, Gourlet-Fleury S (2015) Tree roots can penetrate deeply in African semi-deciduous rain forests: evidence from two common soil types. J Trop Ecol 31:13–23

    Article  Google Scholar 

  • Fujii K, Funakawa S, Hayakawa C, Kosaki T (2008) Contribution of different proton sources to pedogenetic soil acidification in forested ecosystems in Japan. Geoderma 144:478–490

    Article  CAS  Google Scholar 

  • Fujii K, Funakawa S, Hayakawa C, Sukartiningsih, Kosaki T (2009a) Quantification of proton budgets in soils of cropland and adjacent forest in Thailand and Indonesia. Plant Soil 316:241–255

    Article  CAS  Google Scholar 

  • Fujii K, Uemura M, Funakawa S, Hayakawa C, Sukartiningsih, Kosaki T, Ohta S (2009b) Fluxes of dissolved organic carbon in two tropical forest ecosystems of East Kalimantan, Indonesia. Geoderma 152:127–136

    Article  CAS  Google Scholar 

  • Fujii K, Funakawa S, Shinjo H, Hayakawa C, Mori K, Kosaki T (2011a) Fluxes of dissolved organic carbon and nitrogen throughout Andisol, Spodosol and Inceptisol profiles under forest in Japan. Soil Sci Plant Nutr 57:855–866

    Article  CAS  Google Scholar 

  • Fujii K, Hartono A, Funakawa S, Uemura M, Kosaki T (2011b) Fluxes of dissolved organic carbon in three tropical secondary forests developed on serpentine and mudstone. Geoderma 163:119–126

    Article  CAS  Google Scholar 

  • Fyllas NM, Patiño S, Baker TR, Nardoto GB, Martinelli LA, Quesada CA, Paiva R, Schwarz M, Horna V, Mercado LM, Santos A, Arroyo L, Jiménez EM, Luizão FJ, Neill DA, Silva N, Prieto A, Rudas A, Silviera M, Vieira ICG, Lopez–Gonzalez G, Malhi Y, Phillips OL, Lloyd J (2009) Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6:2677–2708

    Google Scholar 

  • Gaston G, Brown S, Lorenzin M, Singh KD (1998) State and change in carbon pools in the forests of tropical Africa. Glob Chang Biol 4:97–114

    Article  Google Scholar 

  • Guggenberger G, Zech W (1994) Dissolved organic carbon control in forest floor leachate: simple degradation products or humic substances? Sci Total Environ 152:37–47

    Article  CAS  Google Scholar 

  • Homann PS, Grigal DF (1992) Molecular weight distribution of soluble organics from laboratory-manipulated surface soils. Soil Sci Soc Am J 56:1305–1310

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB. 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

    Google Scholar 

  • Jones A, Breuning-Madsen H, Brossard M, Dampha A, Deckers J, Dewitte O, Gallali T, Hallett S, Jones R, Kilasara M, Le Roux P, Micheli E, Montanarella L, Spaargaren O, Thiombiano L, Van Ranst E, Yemefack M, Zougmoré R. (eds.) (2013) Soil atlas of Africa. European commission, publications office of the European Union, Luxembourg, p 144

    Google Scholar 

  • Jordan CF, Todd RL, Escalante G (1979) Nitrogen conservation in a tropical rain forest. Oecologia 39:123–128

    Article  CAS  Google Scholar 

  • Joslin JD, Henderson GS (1987) Organic matter and nutrients associated with fine root turnover in a white oak stand. For Sci 33:330–346

    Google Scholar 

  • Kaiser K, Zech W (2000) Dissolved organic matter sorption by mineral constituents of subsoil clay fractions. J Plant Nutr Soil Sci 163:531–535

    Article  CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Article  CAS  Google Scholar 

  • Kingsbury N, Kellman M (1997) Root mat depths and surface soil chemistry in southeastern Venezuela. J Trop Ecol 13:475–479

    Article  Google Scholar 

  • Knops JMH, Bradley KL, Wedin DA (2002) Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5:454–466

    Article  Google Scholar 

  • Markewitz D, Davidson E, Moutinho P, Nepstad D (2004) Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecol Appl 14(4):177–199

    Article  Google Scholar 

  • McDowell WH (1998) Internal nutrient fluxes in a Puerto Rican rain forest. J Trop Ecol 14:521–536

    Article  Google Scholar 

  • Murach D, Ulrich B (1988) Destabilization of forest ecosystems by acid deposition. GeoJournal 17:253–260

    Article  Google Scholar 

  • Nakane K (1980) Comparative studies of cycling of soil organic carbon in three primeval moist forests. Jpn J Ecol 3:155–172

    Google Scholar 

  • Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4:29–48

    Article  CAS  Google Scholar 

  • Nepstad DC, de Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, da Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669

    Article  CAS  Google Scholar 

  • Oliveira EP, Toteu SF, Araújo MNC, Carvalho MJ, Nascimento RS, Bueno JF, McNaughton N, Basilici G (2006) Geologic correlation between the Neoproterozoic Sergipano belt (NE Brazil) and the Yaounde´ belt (Cameroon, Africa). J Afr Earth Sci 44:470–478

    Article  Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364

    Article  CAS  Google Scholar 

  • Peh KSH, Sonké B, Taedoung H, Séné O, Lloyd J, Lewis SL (2012) Investigating diversity dependence of tropical forest litter decomposition: experiments and observations from Central Africa. J Veg Sci 23:223–235

    Article  Google Scholar 

  • Persson H (1980) Spatial distribution of fine-root growth, mortality, and decomposition in a young Scots pine stand in central Sweden. Oikos 34:77–87

    Article  Google Scholar 

  • Pons TL, Perreijn K, van Kessel C, Werger MJA (2007) Symbiotic nitrogen fixation in a tropical rainforest:15N natural abundance measurements supported by experimental isotopic enrichment. New Phytol 173:154–167

    Article  CAS  Google Scholar 

  • Qualls RG, Haines BL (1992) Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci Soc Am J 56:578–586

    Article  CAS  Google Scholar 

  • Qualls RG, Haines BL, Swank WT (1991) Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology 72:254–266

    Article  Google Scholar 

  • Sayer EJ, Tanner EVJ, Cheesman AW (2006) Increased litterfall changes fine root distribution in a moist tropical forest. Plant Soil 281:5–13

    Article  CAS  Google Scholar 

  • Schoenau JJ, Bettany JR (1987) Organic matter leaching as a component of carbon, nitrogen, phosphorus, and sulfur cycles in a forest, grassland, and gleyed soil. Soil Sci Soc Am J 51:646–651

    Article  CAS  Google Scholar 

  • Schwendenmann L, Veldkamp E (2005) The role of dissolved organic carbon, dissolved organic nitrogen, and dissolved inorganic nitrogen in a tropical wet forest ecosystem. Ecosystems 8:339–351

    Article  CAS  Google Scholar 

  • Sleutel S, Vandenbruwane J, De Schrijver A, Wuyts K, Moeskops B, Verheyen K, De Neve S (2009) Patterns of dissolved organic carbon and nitrogen fluxes in deciduous and coniferous forests under historic high nitrogen deposition. Biogeosciences 6:2743–2758

    Article  CAS  Google Scholar 

  • Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. United States Department of Agriculture Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • Solinger S, Kalbitz K, Matzner E (2001) Controls on the dynamics of dissolved organic carbon and nitrogen in a Central European deciduous forest. Biogeochemistry 55:327–349

    Article  Google Scholar 

  • Spehn EM, Scherer–Lorenzen M, Schmid B, Hector A, MC C, PG D, JA F, Jumpponen A, O’Donnovan G, JS P, ED S, AY T, Körner C (2002) The role of legumes as a component of biodiversity in a cross–European study of grassland biomass nitrogen. Oikos 98:205–218

    Article  Google Scholar 

  • Stark NM, Jordan CF (1978) Nutrient retention by the root mat of Amazonian rain forest. Ecology 59(3):434–437

    Article  CAS  Google Scholar 

  • Toteu SF, Fouateu RY, Penaye J, Tchakounte J, Mouangue ACS, Van Schmus WR, Deloule E, Stendal H (2006) U–Pb dating of plutonic rocks involved in the nappe tectonic in southern Cameroon: consequence for the Pan-African orogenic evolution of the central African fold belt. J Afr Earth Sci 44:479–493

    Article  Google Scholar 

  • Van Wambeke A (1992) Oxisols. In: Van Wambeke A (ed) Soils of the tropics—properties and appraisal. McGraw-Hill, New York, pp 139–161.

    Google Scholar 

  • Yahara T, Javadi F, Onoda Y, de Queiroz LP, Faith DP, Prado DE, Akasaka M, Kadoya T, Ishihama F, Davies S, Slik JWF, Yi T, Ma K, Bin C, Darnaedi D, Pennington RT, Tuda M, Shimada M, Ito M, Egan AN, Buerki S, Raes N, Kajita T, Vatanparast M, Mimura M, Tachida H, Iwasa Y, Smith GF, Victor JE, Nkonki T (2013) Global legume diversity assessment: concepts, key indicators, and strategies. Taxon 62(2):249–266

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Shibata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Shibata, M. (2017). Ecosystem Processes of Ferralsols and Acrisols in Forest-Soil Systems of Cameroon. In: Funakawa, S. (eds) Soils, Ecosystem Processes, and Agricultural Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56484-3_9

Download citation

Publish with us

Policies and ethics