Skip to main content

Leg Formation and Regeneration

  • Chapter
  • First Online:
The Cricket as a Model Organism

Abstract

In contrast to higher vertebrates, orthopteran nymphs have remarkable regenerative capacity for regrowing complex morphological structures and organs. In this review, we summarize the molecular basis of tissue regeneration in the cricket Gryllus bimaculatus. In this species, the lost part of a leg can be regenerated epimorphically from blastema cells, a population of dedifferentiated proliferating cells. Blastema cell proliferation is regulated by JAK/STAT and Salvador/Warts/Hippo signaling pathways. The positional information for leg regrowth, which includes the recognition of amputated position and proper regeneration, is maintained by Dachsous/Fat signaling. The regrowth of lost leg segments is reconstructed through the expressions of genes in the hedgehog, wingless, decapentaplegic, and Egf signaling pathways and epigenetic modifiers E(z) and Utx. The insights obtained reveal the high level of conservation between insects and vertebrates, suggesting that Gryllus may be a suitable model for human regenerative medicine studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agata K, Inoue T (2012) Survey of the differences between regenerative and non-regenerative animals. Dev Growth Differ 54:143–152

    Article  CAS  PubMed  Google Scholar 

  • Bando T, Mito T, Maeda Y, Nakamura T, Ito F, Watanabe T, Ohuchi H, Noji S (2009) Regulation of leg size and shape by the Dachsous/Fat signalling pathway during regeneration. Development 136:2235–2245

    Article  CAS  PubMed  Google Scholar 

  • Bando T, Mito T, Nakamura T, Ohuchi H, Noji S (2011a) Regulation of leg size and shape: involvement of the Dachsous-fat signaling pathway. Dev Dyn 240:1028–1041

    Article  PubMed  Google Scholar 

  • Bando T, Hamada Y, Kurita K, Nakamura T, Mito T, Ohuchi H, Noji S (2011b) Lowfat, a mammalian Lix1 homologue, regulates leg size and growth under the Dachsous/Fat signaling pathway during tissue regeneration. Dev Dyn 240:1440–1453

    Article  CAS  PubMed  Google Scholar 

  • Bando T, Ishimaru Y, Kida T, Hamada Y, Matsuoka Y, Nakamura T, Ohuchi H, Noji S, Mito T (2013) Analysis of RNA-Seq data reveals involvement of JAK/STAT signalling during leg regeneration in the cricket Gryllus bimaculatus. Development 140:959–964

    Article  CAS  PubMed  Google Scholar 

  • Basler K, Struhl G (1994) Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368:208–214

    Article  CAS  PubMed  Google Scholar 

  • Bidla G, Lindgren M, Theopold U, Dushay MS (2005) Hemolymph coagulation and phenoloxidase in Drosophila larvae. Dev Comp Immunol 29:669–679

    Article  CAS  PubMed  Google Scholar 

  • Bryant SV, French V, Bryant PJ (1981) Distal regeneration and symmetry. Science (80-.).212:993–1002

    Google Scholar 

  • Campbell G (2002) Distalization of the Drosophila leg by graded EGF-receptor activity. Nature 418:781–785

    Article  CAS  PubMed  Google Scholar 

  • Campbell G, Tomlinson A (1995) Initiation of the proximodistal axis in insect legs. Development 121:619–628

    CAS  Google Scholar 

  • Campbell G, Weaver T, Tomlinson A (1993) Axis specification in the developing Drosophila appendage: the role of wingless, decapentaplegic, and the homeobox gene aristaless. Cell 74:1113–1123

    Article  CAS  PubMed  Google Scholar 

  • Cohen SM, Bronner G, Kuttner F, Jurgens G, Jaeckle H (1989) Distal-less encodes a homoeodomain protein required for limb development in Drosophila. Nature 338:432–434

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Benjumea FJ, Cohen B, Cohen SM (1994) Cell interaction between compartments establishes the proximal-distal axis of Drosophila legs. Nature 372:175–179

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A, Pan D (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130:1120–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French V (1981) Pattern regulation and regeneration. Philos Trans R Soc Lond B Biol Sci 295:601–617

    Article  CAS  PubMed  Google Scholar 

  • French V, Bryant PJ, Bryant SV (1976) Pattern regulation in epimorphic fields. Science (80-.). 193:969–981

    Google Scholar 

  • Galindo MI, Bishop SA, Greig S, Couso JP (2002) Leg patterning driven by proximal-distal interactions and EGFR signaling. Science 297:256–259 (80–)

    Article  CAS  PubMed  Google Scholar 

  • Galindo MI, Bishop SA, Couso JP (2005) Dynamic EGFR-Ras signaling in Drosophila leg development. Dev Dyn 233:1496–1508

    Article  CAS  PubMed  Google Scholar 

  • Goto S, Hayashi S (1999) Proximal to distal cell communication in the Drosophila leg provides a basis for an intercalary mechanism of limb patterning. Development 126:3407–3413

    CAS  PubMed  Google Scholar 

  • Hamada Y, Bando T, Nakamura T, Ishimaru Y, Mito T, Noji S, Tomioka K, Ohuchi H (2015) Leg regeneration is epigenetically regulated by histone H3K27 methylation in the cricket Gryllus bimaculatus. Development 142:2916–2927

    Article  CAS  PubMed  Google Scholar 

  • Harvey KF, Hariharan IK (2012) The hippo pathway. Cold Spring Harb Perspect Biol 4:a011288

    Article  PubMed  PubMed Central  Google Scholar 

  • Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13:246–257

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Mito T, Miyawaki K, Matsushima K, Shinmyo Y, Heanue TA, Mardon G, Ohuchi H, Noji S (2002) Correlation of expression patterns of homothorax, dachshund, and Distal-less with the proximodistal segmentation of the cricket leg bud. Mech Dev 113:141–148

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Nakamura T, Bando T, Matsuoka Y, Ohuchi H, Noji S, Mito T (2015) Involvement of dachshund and Distal-less in distal pattern formation of the cricket leg during regeneration. Sci Rep 5:8387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuyama T, Paro R (2011) Epigenetic reprogramming during tissue regeneration. FEBS Lett 585:1617–1624

    Article  CAS  PubMed  Google Scholar 

  • Kojima T (2004) The mechanism of Drosophila leg development along the proximodistal axis. Dev Growth Differ 46:115–129

    Article  CAS  PubMed  Google Scholar 

  • Manjon C, Sanchez-Herrero E, Suzanne M (2007) Sharp boundaries of Dpp signalling trigger local cell death required for Drosophila leg morphogenesis. Nat Cell Biol 9:57–63

    Article  CAS  PubMed  Google Scholar 

  • Meinhardt H (1983) Cell determination boundaries as organizing regions for secondary embryonic fields. Dev Biol 96:375–385

    Article  CAS  PubMed  Google Scholar 

  • Meissner A (2010) Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 28:1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Mito T, Inoue Y, Kimura S, Miyawaki K, Niwa N, Shinmyo Y, Ohuchi H, Noji S (2002) Involvement of hedgehog, wingless, and dpp in the initiation of proximodistal axis formation during the regeneration of insect legs, a verification of the modified boundary model. Mech Dev 114:27–35

    Article  CAS  PubMed  Google Scholar 

  • Mito T, Shinmyo Y, Kurita K, Nakamura T, Ohuchi H, Noji S (2011) Ancestral functions of Delta/Notch signaling in the formation of body and leg segments in the cricket Gryllus bimaculatus. Development 138:3823–3833

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki K, Inoue Y, Mito T, Fujimoto T, Matsushima K, Shinmyo Y, Ohuchi H, Noji S (2002) Expression patterns of aristaless in developing appendages of Gryllus bimaculatus (cricket). Mech Dev 113:181–184

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Mito T, Tanaka Y, Bando T, Ohuchi H, Noji S (2007) Involvement of canonical Wnt/Wingless signaling in the determination of the positional values within the leg segment of the cricket Gryllus bimaculatus. Dev Growth Differ 49:79–88

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Mito T, Miyawaki K, Ohuchi H, Noji S (2008a) EGFR signaling is required for re-establishing the proximodistal axis during distal leg regeneration in the cricket Gryllus bimaculatus nymph. Dev Biol 319:46–55

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Mito T, Bando T, Ohuchi H, Noji S (2008b) Dissecting insect leg regeneration through RNA interference. Cell Mol Life Sci 65:64–72

    Article  CAS  PubMed  Google Scholar 

  • Niwa N, Saitoh M, Ohuchi H, Yoshioka H, Noji S (1997) Correlation between Distal-less expression patterns and structures of appendages in development of the two-spotted cricket, Gryllus bimaculatus. Zool Sci 14:115–125

    Article  Google Scholar 

  • Niwa N, Inoue Y, Nozawa A, Saito M, Misumi Y, Ohuchi H, Yoshioka H, Noji S (2000) Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127:4373–4381

    CAS  PubMed  Google Scholar 

  • Pan D (2010) The Hippo signaling pathway in development and cancer. Dev Cell 19:491–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Réaumur RAF (1712) Sur les diverses reproductions qui se font dans les Ecrevisse, les Omars, les Crabes, etc. et entr’autres sur celles de leurs Jambes et de leurs Ecailles. Mem Acad Roy Sci 223–245

    Google Scholar 

  • Staley BK, Irvine KD (2012) Hippo signaling in Drosophila: recent advances and insights. Dev Dyn 241:3–15

    Article  CAS  PubMed  Google Scholar 

  • Tajiri R, Misaki K, Yonemura S, Hayash S (2011) Joint morphology in the insect leg: evolutionary history inferred from Notch loss-of-function phenotypes in Drosophila. Development 138:4621–4626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeo M, Chou WC, Sun Q, Lee W, Rabbani P, Loomis C, Taketo MM, Ito M (2013) Wnt activation in nail epithelium couples nail growth to digit regeneration. Nature 499:228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Tsarouhas V, Xylourgidis N, Sabri N, Tiklová K, Nautiyal N, Gallio M, Samakovlis C (2009) The tyrosine kinase stitcher activates grainy head and epidermal wound healing in Drosophila. Nat Cell Biol 11:890–895

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Tumaneng K, Guan K-L (2011) The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 13:877–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Hideyo Ohuchi, Taro Mito, Taro Nakamura, Yuko Maeda, Fumiaki Ito, Takuro Kida, Yuji Matsuoka, Yoshiyasu Ishimaru, Kazuki Kurita, Hidetaka Mizushima, Misa Okumura, and Yuki Bando to the cricket studies on leg development and leg regeneration described in this article. T.B. and S.N. were supported by a grant from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Bando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Bando, T., Hamada, Y., Noji, S. (2017). Leg Formation and Regeneration. In: Horch, H., Mito, T., Popadić, A., Ohuchi, H., Noji, S. (eds) The Cricket as a Model Organism. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56478-2_3

Download citation

Publish with us

Policies and ethics