Skip to main content

Fighting Behavior: Understanding the Mechanisms of Group-Size-Dependent Aggression

  • Chapter
  • First Online:
Book cover The Cricket as a Model Organism
  • 1174 Accesses

Abstract

Aggressive behavior is a common behavior in animals. In most cases, an animal’s behavior toward an opponent is a violent attack. Male crickets (Gryllus bimaculatus) exhibit intensively aggressive behavior toward other males, most often culminating in fighting. The detection of conspecific male cuticular substances initiates aggressive behavior in male crickets. After a fight, a loser no longer exhibits aggressiveness in a second bout or in separate encounters with another male; rather the defeated male exhibits avoidance behavior.

Aggressive behavior in crickets provides an excellent model system to understand neuronal mechanisms underlying real-time control of sophisticated behavior and social adaptability of animals. Animals alter their behavior in order to respond to the demands of changing social environments. Society and crowding conditions are dynamic environments. In this chapter, we focus on how crickets determine their behavior depending on their social interactions, focusing on behavioral and physiological aspects. Whether the nitric oxide (NO) system and octopaminergic (OAergic) system in the central nervous system of crickets could mediate aggressive behavior of the crickets is discussed. Based on these results, a neurophysiological model is designed to elucidate the mechanisms of social adaptability. This model demonstrates that a multiple feedback structure, composed of a feedback loop in the nervous systems and individual interactions with other crickets, may be a key to aggression influenced by group size (group-size-dependent aggressive behavior).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamo S, Hoy R (1995) Agonistic behaviour in male and female field crickets, Gryllus bimaculatus, and how behavioural context influences its expression. Anim Behav 49:1491–1501

    Article  Google Scholar 

  • Adamo SA, Linn CE, Hoy RR (1995) The role of neurohormonal octopamine during ‘fight or flight’ behaviour in the field cricket Gryllus bimaculatus. J Exp Biol 198:1691–1700

    CAS  PubMed  Google Scholar 

  • Ahern GP, Klyachko VA, Jackson MB (2002) cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO. Trends Neurosci 25:510–517

    Article  CAS  PubMed  Google Scholar 

  • Alexander DR (1961) Aggressiveness, territoriality, and sexual behavior in field crickets (Orthoptera: Gryllidae). Behavior 17:130–223

    Article  Google Scholar 

  • Aonuma H, Newland P (2001) Opposing actions of nitric oxide on synaptic inputs of identified interneurones in the central nervous system of the crayfish. J Exp Biol 204:1319–1332

    CAS  PubMed  Google Scholar 

  • Aonuma H, Newland P (2002) Synaptic inputs onto spiking local interneurons in crayfish are depressed by nitric oxide. J Neurobiol 52:144–155

    Article  CAS  PubMed  Google Scholar 

  • Aonuma H, Niwa K (2004) Nitric oxide regulates the levels of cGMP accumulation in the cricket brain. Acta Biol Hung 55:65–70

    Article  CAS  PubMed  Google Scholar 

  • Aonuma H, Watanabe T (2012) Octopaminergic system in the brain controls aggressive motivation in the ant, Formica japonica. Acta Biol Hung 63(Suppl 2):63–68

    Article  PubMed  Google Scholar 

  • Aonuma H, Nagayama T, Takahata M (2000) Modulatory effects of nitric oxide on synaptic depression in the crayfish neuromuscular system. J Exp Biol 203:3595–3602

    CAS  PubMed  Google Scholar 

  • Aonuma H, Iwasaki M, Niwa K (2004) Role of NO signaling in switching mechanisms in the nervous system of insect. In: Proceedings of the SICE annual conference on CD-ROM, pp 2477–2482 (ISBN 2474-907764-907722-907767)

    Google Scholar 

  • Aonuma H, Kitamura Y, Niwa K, Ogawa H, Oka K (2008) Nitric oxide-cyclic guanosine monophosphate signaling in the local circuit of the cricket abdominal nervous system. Neuroscience 157:749

    Article  CAS  PubMed  Google Scholar 

  • Aonuma H, Sakura M, Ota J, Asama H (2009) Social adaptive functions in animals -learning from insect social behaviors-”. In: Proceedings of the 2009 IEEE/RSJ international conference on intelligent robots and systems (Workshops/Tutorials, CD), pp 10–15

    Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  CAS  PubMed  Google Scholar 

  • Bicker G (2001) Sources and targets of nitric oxide signalling in insect nervous systems. Cell Tissue Res 303:137–146

    Article  CAS  PubMed  Google Scholar 

  • Bredt DS, Synder SH (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci U S A 86:9030–9033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funato T, Nara M, Kurabayashi D, Ashikaga M, Aonuma H (2011) A model for group-size-dependent behaviour decisions in insects using an oscillator network. J Exp Biol 214:2426–2434

    Article  PubMed  Google Scholar 

  • Gelperin A (1994) Nitric oxide mediates network oscillations of olfactory interneurons in a terrestrial mollusc. Nature 369:61–63

    Article  CAS  PubMed  Google Scholar 

  • Hack MA (1997) Assessment strategies in the contests of male crickets, Acheta domesticus (L.). Anim Behav 53:733–747

    Article  Google Scholar 

  • Hofmann HA, Stevenson PA (2000) Flight restores fight in crickets. Nature 403:613

    Article  CAS  PubMed  Google Scholar 

  • Homberg U, Christensen TA, Hildebrand JG (1989) Structure and function of the deutocerebrum in insects. Annu Rev Entomol 34:477–501

    Article  CAS  PubMed  Google Scholar 

  • Iba M, Nagao T, Akihisa U (1995) Effects of population density on growth, behavior and levels of biogenic amines in the cricket, Gryllus bimaculatus. Zool Sci 12:695–702

    Article  CAS  Google Scholar 

  • Iwasaki M, Nishino H, Delago A, Aonuma H (2007) Effects of NO/cGMP signaling on behavioral changes in subordinate male crickets, Gryllus bimaculatus. Zool Sci 24:860–868

    Article  CAS  PubMed  Google Scholar 

  • Johansson KU, Mellon D Jr (1998) Nitric oxide as a putative messenger molecule in the crayfish olfactory midbrain. Brain Res 807:237–242

    Article  CAS  PubMed  Google Scholar 

  • Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824

    Article  CAS  PubMed  Google Scholar 

  • Kawabata K, Fujiki T, Ikemoto Y, Aonuma H, Asama H (2007) A neuromodulation model for adaptive behavior selection of the cricket. J Robot Mech 19:388–394

    Google Scholar 

  • Kawabata K, Fujii T, Aonuma H, Suzuki T, Ashikaga M, Ota J, Asama H (2012) A neuromodulation model of behavior selection in the fighting behavior of male crickets. Robot Auton Syst 60:707–713

    Article  Google Scholar 

  • Matsumoto Y, Unoki S, Aonuma H, Mizunami M (2006) Critical role of nitric oxide-cGMP cascade in the formation of cAMP-dependent long-term memory. Learn Mem 13:35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, phathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  • Mothet JP, Fossier P, Tauc L, Baux G (1996) NO decreases evoked quantal ACh release at a synapse of Aplysia by a mechanism independent of Ca2+ influx and protein kinase G. J Physiol (Lond) 493:769–784

    Article  CAS  PubMed Central  Google Scholar 

  • Müller U (1997) The nitric oxide system in insects. Prog Neurobiol 51:363–381

    Article  PubMed  Google Scholar 

  • Nagamoto J, Aonuma H, Hisada M (2005) Discrimination of conspecific individuals via cuticular pheromones by males of the cricket Gryllus bimaculatus. Zool Sci 22:1079–1088

    Article  PubMed  Google Scholar 

  • Philippides A, Husbands P, O’Shea M (2000) Four-dimensional neuronal signaling by nitric oxide: a computational analysis. J Neurosci 20:1199–1207

    CAS  PubMed  Google Scholar 

  • Qazi S, Trimmer BA (1999) The role of nitric oxide in motoneuron spike activity and muscarinic-evoked changes in cGMP in the CNS of larval Manduca sexta. J Comp Physiol A 185:539–550

    Article  CAS  PubMed  Google Scholar 

  • Rillich J, Schildberger K, Stevenson PA (2007) Assessment strategy of fighting crickets revealed by manipulating information exchange. Anim Behav 74:823–836

    Article  Google Scholar 

  • Rillich J, Schildberger K, Stevenson PA (2011) Octopamine and occupancy: an aminergic mechanism for intruder-resident aggression in crickets. Proc R Soc B 278:1873–1880

    Article  PubMed  Google Scholar 

  • Roeder T (1990) High-affinity antagonists of the locust neuronal octopamine receptor. Eur J Pharmacol 191:221–224

    Article  CAS  PubMed  Google Scholar 

  • Roeder T, Degen J, Gewecke M (1998) Epinastine, a highly specific antagonist of insect neuronal octopamine receptors. Eur J Pharmacol 349:171–177

    Article  CAS  PubMed  Google Scholar 

  • Sakura M, Aonuma H (2013) Aggressive behavior in the antennectomized male cricket Gryllus bimaculatus. J Exp Biol 216:2221–2228

    Article  PubMed  Google Scholar 

  • Seki Y, Aonuma H, Kanzaki R (2005) Pheromone processing center in the protocerebrum of Bombyx mori revealed by nitric oxide-induced anti-cGMP immunocytochemistry. J Comp Neurol 481:340–351

    Article  CAS  PubMed  Google Scholar 

  • Simmons LW (1986) Inter-male competition and mating success in the field cricket, Gryllus bimaculatus (De Geer). Anim Behav 34:567–579

    Article  Google Scholar 

  • Stevenson PA, Dyakonova V, Rillich J, Schildberger K (2005) Octopamine and experience-dependent modulation of aggression in crickets. J Neurosci 25:1431–1441

    Article  CAS  PubMed  Google Scholar 

  • Tregenza T, Wedell N (1997) Definitive evidence for cuticular pheromones in a cricket. Anim Behav 54:979–984

    Article  CAS  PubMed  Google Scholar 

  • Wilson CH, Christensen TA, Nighorn AJ (2007) Inhibition of nitric oxide and soluble guanylyl cyclase signaling affects olfactory neuron activity in the moth, Manduca sexta. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193:715–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoritsune A, Aonuma H (2012) The anatomical pathways for antennal sensory information in the central nervous system of the cricket, Gryllus bimaculatus. Invert Neurosci 12:103–117

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Aonuma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Aonuma, H. (2017). Fighting Behavior: Understanding the Mechanisms of Group-Size-Dependent Aggression. In: Horch, H., Mito, T., Popadić, A., Ohuchi, H., Noji, S. (eds) The Cricket as a Model Organism. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56478-2_13

Download citation

Publish with us

Policies and ethics