Skip to main content

Neurons and Networks Underlying Singing Behaviour

  • Chapter
  • First Online:
The Cricket as a Model Organism

Abstract

In cricket brains a neuropil area in the anterior ventral protocerebrum next to the pedunculus and the α-lobe is involved in the control of singing behaviour. Command interneurons for singing have dendrites in this neuropil, whereas their axon descends towards the ventral nerve cord. A bilateral calling song command neuron has been identified which drives the singing central pattern generator with tonic spike activity. The control of courtship and rivalry song via the brain is not yet resolved at a cellular level. Electrical and pharmacological brain stimulation reliably elicit normal and fictive singing in crickets. The central pattern generating network for singing seems to extend from the metathoracic ganglion complex to the first unfused abdominal ganglion A3. Crickets immediately stop singing and do not recover, once the connectives anterior to A3 are cut. Opener interneurons have been identified in A3, which modify and reset the singing motor pattern. The response properties of opener and closer interneurons upon hyperpolarising current injection indicate that post-inhibitory rebound mechanisms may be central to motor pattern generation underlying singing. Recordings of flight interneurons and singing interneurons prove that both motor patterns are controlled by separate neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamo SA, Hoy RR (1994) Mating behaviour of the field cricket Gryllus bimaculatus and its dependence on social and environmental cues. Anim Behav 47:857–868

    Article  Google Scholar 

  • Adamo SA, Hoy RR (1995) Agonistic behaviour in male and female field crickets, Gryllus bimaculatus, and how behavioural context influences its expression. Anim Behav 49:1491–1501

    Article  Google Scholar 

  • Alexander RD (1962) Evolutionary change in cricket acoustical communication. Evolution 16(4):443–467

    Article  Google Scholar 

  • Bentley DR (1969) Intracellular activity in cricket neurons during generation of song patterns. J Comp Physiol A 62(3):267–283

    Google Scholar 

  • Bentley D (1977) Control of cricket song patterns by descending interneurons. J Comp Physiol A 16(1):19–38

    Article  Google Scholar 

  • Elepfandt A (1980) Morphology and output coupling of wing muscle motoneurons in the field cricket (Gryllidae, Orthoptera). Zool Jahrb Physiol 84:26–45

    Google Scholar 

  • Elliott CJH, Koch UT (1983) Sensory feedback stabilizing reliable stridulation in the field cricket Gryllus campestris L. Anim Behav 31:887–901

    Article  Google Scholar 

  • Fergus DJ, Shaw KL (2013) Circadian rhythms and period expression in the Hawaiian cricket genus Laupala. Behav Genet 43(3):241–253

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamada A, Miyawaki K, Honda-Sumi E, Tomioka K, Mito T, Ohuchi H, Noji S (2009) Loss-of-function analyses of the fragile X-related and dopamine receptor genes by RNA interference in the cricket Gryllus bimaculatus. Dev Dyn 238(8):2025–2033

    Article  CAS  PubMed  Google Scholar 

  • Hedwig B (2000) Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state. J Neurophysiol 83(2):712–722

    CAS  PubMed  Google Scholar 

  • Hedwig B (2006) Pulses, patterns and paths: neurobiology of acoustic behaviour in crickets. J Comp Physiol A 192:677–689

    Article  Google Scholar 

  • Hennig RM (1989) Neuromuscular activity during stridulation in the cricket Teleogryllus commodus. J Comp Physiol A 165:837–846

    Article  Google Scholar 

  • Hennig RM (1990) Neuronal control of the forewings in two different behaviours: stridulation and flight in the cricket, Teleogryllus commodus. J Comp Physiol A 167(5):617–627

    Google Scholar 

  • Hennig RM, Otto D (1996) Distributed control of song pattern generation in crickets revealed by lesions to the thoracic ganglia. Zoology 99:268–276

    Google Scholar 

  • Huber F (1955) Sitz und Bedeutung nervӧser Zentren für Instinkthandlungen beim Männchen von Gryllus campestris L. Z Tierpsychol 12(1):12–48

    Article  Google Scholar 

  • Huber F (1960) Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen. J Comp Physiol A 44(1):60–132

    Google Scholar 

  • Huber F (1962) Central nervous control of sound production in crickets and some speculations on its evolution. Evolution 16(4):429–442

    Article  Google Scholar 

  • Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1:3–10

    Article  Google Scholar 

  • Kutsch W (1969) Neuromuscular activity in three cricket species during various behavioural patterns. J Comp Physiol A 63(4):335–378

    Google Scholar 

  • Kutsch W, Huber F (1989) Neural basis of song production. In: Huber F, Moore TE, Loher W (eds) Cricket behaviour and neurobiology. Cornell University Press, Ithaca, pp 262–309

    Google Scholar 

  • Kutsch W, Otto D (1972) Evidence for spontaneous song production independent of head ganglia in Gryllus campestris L. J Comp Physiol A 81(1):115–119

    Article  Google Scholar 

  • Mendelson TC, Shaw KL (2005) Rapid speciation in an arthropod. Nature 433:375–376

    Article  CAS  PubMed  Google Scholar 

  • Möss D (1971) Sense organs in the wing region of the field cricket (Gryllus campestris L.) and their role in the control of stridulation and wing position. J Comp Physiol A 73(1):53–83

    Google Scholar 

  • Nakatani I, Adachi T, Murayama O (1994) Selection of light or darkness, locomotor, and stridulatory activities in the cricket, Gryllus bimaculatus DeGeer (Orthoptera: Gryllidae). J Insect Physiol 40:1007–1015

    Article  CAS  Google Scholar 

  • Otto D (1971) Central nervous control of sound production in crickets. J Comp Physiol A 74(3):227–271

    Google Scholar 

  • Otto D (1978) Changes of parameters in cricket song (Gryllus campestris L.) after injection of drugs into the brain. Verh Dtsch Zool Ges 245

    Google Scholar 

  • Perkel DH, Mulloney B (1974) Motor pattern production in reciprocally inhibitory neurons exhibiting postinhibitory rebound. Science 185(4146):181–183

    Article  CAS  PubMed  Google Scholar 

  • Pires A, Hoy RR (1992) Temperature coupling in cricket acoustic communication II. Localization of temperature effects on song production and recognition networks in Gryllus firmus. J Comp Physiol A 171:79–92

    Article  CAS  PubMed  Google Scholar 

  • Satterlie RA (1985) Reciprocal inhibition and post-inhibitory rebound produce reverberation in a locomotor pattern generator. Science 229:402–404

    Article  CAS  PubMed  Google Scholar 

  • Schöneich S, Hedwig B (2011) Neural basis of singing in crickets: central pattern generation in abdominal ganglia. Naturwissenschaften 98:1069–1073

    Article  PubMed  Google Scholar 

  • Schöneich S, Hedwig B (2012) Cellular basis for singing motor pattern generation in the field cricket (Gryllus bimaculatus DeGeer). Brain Behav 2(6):707–725

    Article  PubMed  PubMed Central  Google Scholar 

  • Selverston AI (2010) Invertebrate central pattern generator circuits. Philos Trans R Soc B 365(1551):2329–2345

    Article  Google Scholar 

  • Verburgt L, Ferreira M, Ferguson JWH (2011) Male field cricket song reflects age, allowing females to prefer young males. Anim Behav 81:19–29

    Article  Google Scholar 

  • Watanabe T, Ochiai H, Sakuma T, Horch HW, Hamaguchi N, Nakamura T, Bando T, Ohuchi H, Yamamoto T, Noji S, Mito T (2012) Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nat Commun 3:1–8

    Google Scholar 

  • Wenzel B, Hedwig B (1999) Neurochemical control of cricket stridulation revealed by pharmacological microinjections into the brain. J Exp Biol 202:2203–2216

    CAS  PubMed  Google Scholar 

  • Wiedenmann G, Loher W (1984) Circadian control of singing in crickets: two different pacemakers for early-evening and before-dawn activity. J Insect Physiol 30:145–151

    Article  Google Scholar 

  • Yukizane M, Kaneko A, Tomioka K (2002) Electrophysiological and morphological characterization of the medulla bilateral neurons that connect bilateral optic lobes in the cricket, Gryllus bimaculatus. J Insect Physiol 48:631–641

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berthold Hedwig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Schöneich, S., Hedwig, B. (2017). Neurons and Networks Underlying Singing Behaviour. In: Horch, H., Mito, T., Popadić, A., Ohuchi, H., Noji, S. (eds) The Cricket as a Model Organism. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56478-2_10

Download citation

Publish with us

Policies and ethics