Field Harmonics in Air Gap of A.C. Machine in Nonlinear Network

  • Iliya Boguslawsky
  • Nikolay Korovkin
  • Masashi Hayakawa


This chapter presents investigation methods of field harmonics in A.C. machine air gap, when operating in nonlinear network. At non-sinusoidal power supply of A.C. machines it is convenient to obtain calculation expressions for rotor and stator field harmonics in air gap using a symbolic method of representation of MMF in the form of time complexes (phasors) in combination with a complex form of representation of harmonic series (Fourier). Thus, for induction machines, harmonic complex amplitudes of field induced by rotor windings in air gap in certain scale virtually repeat their MMF harmonics; the same refers to stator field harmonics.


Flux Density Complex Amplitude Induction Machine Flux Density Component Harmonic Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


I Monographs, textbooks

  1. 1.
    Demirchyan K.S., Neyman L.R., Korovkin N.V., Theoretical Electrical Engineering. Moscow, St.Petersburg: Piter, 2009. Vol. 1, 2. (In Russian).Google Scholar
  2. 2.
    Kuepfmueller K., Kohn G., Theoretische Elektrotechnik und Elektronik. 15 Aufl. Berlin, New York: Springer. 2000. (In German).Google Scholar
  3. 3.
    Richter R., Elektrische Maschinen. Berlin: Springer. Band I, 1924; Band II, 1930; Band III, 1932; Band IV, 1936; Band V, 1950. (In German).Google Scholar
  4. 4.
    Mueller G., Ponick B., Elektrische Maschinen. New York, John Wiley, 2009. - 375 S. (In German).Google Scholar
  5. 5.
    Schuisky W., Berechnung elektrischer Maschinen. Wien: Springer, 1960. (In German).Google Scholar
  6. 6.
    Mueller G., Vogt K., Ponick B., Berechnung elektrischer Maschinen. Springer, 2007. 475 S. (In German).Google Scholar
  7. 7.
    Concordia Ch. Synchronous Machines, Theory a. Performance. New York: John Wiley, 1951.Google Scholar
  8. 8.
    Ruedenberg R., Elektrische Schaltvorgaenge. Berlin, Heidelberg, New York: Springer, 1974. (In German).Google Scholar
  9. 9.
    Lyon V., Transient Analysis of A.C. Machinery. New York: John Wiley, 1954.Google Scholar
  10. 10.
    Korn G., Korn T., Mathematical Handbook. New York: McGraw–Hill, 1961.Google Scholar
  11. 11.
    Jeffris H., Swirles B., Methods of Mathematical Physics. Third Edition, Vol. 1 – Vol. 3, Cambridge: Cambridge Univ. Press, 1966.Google Scholar
  12. 12.
    Boguslawsky I.Z., A.C. motors and generators. The theory and investigation methods by their operation in networks with non linear elements. Monograph. TU St.Petersburg Edit., 2006. Vol. 1; Vol.2. (In Russian).Google Scholar

III. Synchronous machines. Papers, inventor’s certificates, patents

  1. 13.
    Boguslawsky I.Z., Operating – regime currents of a salient – pole machine. Power Eng. (New York), 1982, № 4.Google Scholar
  2. 14.
    Boguslawsky I.Z., Currents and harmonic MMFs in a damper winding with damaged bar at a pole. Power Eng. (New York), 1985, № 1.Google Scholar
  3. 15.
    Polujadoff M., General rotating MMF – Theory of squirrel cage induction machines with non-uniform air gap and several non-sinusoidally distributed windings. Trans AIEE, PAS, 1982.Google Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Iliya Boguslawsky
    • 1
  • Nikolay Korovkin
    • 1
  • Masashi Hayakawa
    • 2
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySaint PetersburgRussia
  2. 2.The University of Electro-CommunicationsTokyoJapan

Personalised recommendations