Skip to main content

Genome and Transcriptome-Wide Research of Brain Evolution

  • Chapter
  • First Online:
  • 2118 Accesses

Part of the book series: Diversity and Commonality in Animals ((DCA))

Abstract

Genomics and transcriptomics research of the brain, accelerated by the development of sequencing technologies and genomic analysis methods, can reveal the genetic mechanisms underlying brain function, evolution, and development in various animals. This chapter first introduces the background of the recent technology of sequencing machines and analytical methods by bioinformatics, which makes possible the large-scale study of brains, and then presents recent results and achievements for brain function and evolution. Recent studies utilizing these emerging technologies are also introduced to demonstrate the power of large-scale analysis of genome and transcriptome for brain research. A perspective of international research projects for brain function is also introduced in the last section.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams MD et al (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252(5013):1651–1656

    Article  CAS  PubMed  Google Scholar 

  • Adams MD et al (2000) The genome sequence of Drosophila melanogaster. Science 287(5461):2185–2195

    Article  PubMed  Google Scholar 

  • Albertin CB et al (2012) Cephalopod genomics: a plan of strategies and organization stand. Genomic Sci 7:175–188

    Article  Google Scholar 

  • Blattner FR et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  CAS  PubMed  Google Scholar 

  • Cahoy JD et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278

    Article  CAS  PubMed  Google Scholar 

  • Carro MS et al (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463:318–325

    Article  CAS  PubMed  Google Scholar 

  • Chin J et al (2014) SMRT® sequencing solutions for large genomes and transcriptomes. J Biomol Tech 25(suppl):S15

    PubMed Central  Google Scholar 

  • Goffeau A et al (1997) The yeast genome directory. Nature 387:5–105

    CAS  Google Scholar 

  • Goymer P (2007) Alternative splicing switches on the brain. Nat Rev Genet 8:572

    Article  CAS  Google Scholar 

  • Hang G et al (2014) Genomics in neurological disorders. Genomics Proteomics Bioinformatics 12(4):156–163

    Article  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  Google Scholar 

  • Kang HJ et al (2011) Spatio-temporal transcriptome of the human brain. Nature 478:483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapranov P et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488

    Article  CAS  PubMed  Google Scholar 

  • Khaitovich P et al (2005) Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309:1850

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39:309–338

    Article  CAS  PubMed  Google Scholar 

  • Levene MJ (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299(5607):682–686

    Article  CAS  PubMed  Google Scholar 

  • Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12:671–682

    Article  CAS  PubMed  Google Scholar 

  • Meshorer E et al (2005) Chronic cholinergic imbalances promote brain diffusion and transport abnormalities. FASEB J 19:910–922

    Article  CAS  PubMed  Google Scholar 

  • Miller JR et al (2010) Assembly algorithms for next-generation sequencing data. Genomics 95(6):315–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin/New York

    Book  Google Scholar 

  • Sarah BN et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276

    Article  Google Scholar 

  • Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5(1):16–18

    Article  CAS  PubMed  Google Scholar 

  • Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoltzfus A (1999) On the possibility of constructive neutral evolution. J Mol Evol 49(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  • Yeo G et al (2004) Variation in alternative splicing across human tissues. Genome Biol 5:R74

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Ogura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Ogura, A. (2017). Genome and Transcriptome-Wide Research of Brain Evolution. In: Shigeno, S., Murakami, Y., Nomura, T. (eds) Brain Evolution by Design. Diversity and Commonality in Animals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56469-0_8

Download citation

Publish with us

Policies and ethics