Skip to main content

Molecular Characteristics of Neuron-like Functions in Single-Cell Organisms

  • Chapter
  • First Online:
Brain Evolution by Design

Part of the book series: Diversity and Commonality in Animals ((DCA))

Abstract

Single-cell organisms can respond to stimuli from the environment, including chemical and tactile stimuli, to survive and propagate. Thus, single-cell organisms appear to show neuron-like functions. In this review, I investigate neuron-like functions in bacteria (Escherichia coli) and ciliates (Paramecium and Tetrahymena). In E. coli, six chemotaxis-specific (che) genes have been identified as critical in the ability of organisms to react to stimuli from the environment. The che genes encode signaling molecules to transmit information from receptors to motor proteins that regulate some E. coli behavior. Thus, the Che proteins are thought to form a “central processing unit (CPU)”-like complex in E. coli. The eukaryotic single-cell organisms Paramecium and Tetrahymena have also been employed for understanding the molecular mechanisms underlying ciliate behaviors. Paramecia uptake calcium ions and show membrane excitation when they receive a repulsive stimulus, similar to neurons. In addition, the calcium ions function as the second messengers through calmodulin activity and regulate the concentration of cAMP in cilia. Increment changes in cAMP concentration in the cilia result in changes in their beating pattern, which alters the behaviors of paramecia. Moreover, our recent results indicate that the neurotransmitter serotonin is involved in physical functions in Tetrahymena thermophila. These results indicate clearly that bacteria and ciliates are equipped with neuron-like functions. The discussion addresses whether single-cell organisms have intelligence, emotion, and mind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adoutte A, Ling KY, Forte M, Ramanathan R, Nelson D, Kung C (1981) Ionic channels of Paramecium: from genetics and electrophysiology to biochemistry. J Physiol 77:1145–1159

    CAS  Google Scholar 

  • Allen S, Gibson I (1972) Genome amplification and gene expression in ciliate macronucleus. Biochem Genet 6:293–313

    Article  CAS  PubMed  Google Scholar 

  • Armus HL, Montgomery AR, Jellison JL (2006) Discrimination learning in paramecia (P. caudatum). Psychol Rec 56:489–498

    Google Scholar 

  • Bell WE, Karstens W, Sun Y, Van Houten JL (1998) Biotin chemoresponse in Paramecium. J Comp Physiol A Sens Neural Behav Physiol 183:361–366

    Article  CAS  Google Scholar 

  • Bell WE, Preston RR, Yano J, Van Houten JL (2007) Genetic dissection of attractant-induced conductances in Paramecium. J Exp Biol 210:357–365

    Article  CAS  PubMed  Google Scholar 

  • Berg HC (1971) How to track bacteria. Rev Sci Instrum 42:868–871

    Article  CAS  PubMed  Google Scholar 

  • Berg HC (1975) Chemotaxis in bacteria. Annu Rev Biophys Bioeng 4:119–136

    Article  CAS  PubMed  Google Scholar 

  • Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analyzed by 3-dimensional tracking. Nature (Lond) 239:500–504

    Article  CAS  Google Scholar 

  • Bibikov SI, Biran R, Rudd KE, Parkinson JS (1997) A signal transducer for aerotaxis in Escherichia coli. J Bacteriol 179:4075–4079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blundell JE (1992) Serotonin and the biology of feeding. Am J Clin Nutr 55:155–159

    Google Scholar 

  • Bonini NM, Nelson DL (1988) Differential regulation of Paramecium ciliary motility by cAMP and cGMP. J Cell Biol 106:1615–1623

    Article  CAS  PubMed  Google Scholar 

  • Borkovich KA, Simon MI (1990) The dynamics of protein-phosphorylation in bacterial chemotaxis. Cell 63:1339–1348

    Article  CAS  PubMed  Google Scholar 

  • Borkovich KA, Kaplan N, Hess JF, Simon MI (1989) Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer. Proc Natl Acad Sci USA 86:1208–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourret RB, Stock AM (2002) Molecular information processing: lessons from bacterial chemotaxis. J Biol Chem 277:9625–9628

    Article  CAS  PubMed  Google Scholar 

  • Boyd A, Kendall K, Simon MI (1983) Structure of the serine chemoreceptor in Escherichia coli. Nature (Lond) 301:623–626

    Article  CAS  Google Scholar 

  • Bucci G, Ramoino P, Diaspro A, Usai C (2005) A role for GABA(A) receptors in the modulation of Paramecium swimming behavior. Neurosci Lett 386:179–183

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to 2-component regulators. Science 262:539–544

    Article  CAS  PubMed  Google Scholar 

  • Clark KD, Hennessey TM, Nelson DL (1993) External GTP alters the motility and elicits an oscillating membrane depolarization in Paramecium tetraurelia. Proc Natl Acad Sci USA 90:3782–3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark KD, Hennessey TM, Nelson DL, Preston RR (1997) Extracellular GTP causes membrane-potential oscillations through the parallel activation of Mg2+ and Na+ currents in Paramecium tetraurelia. J Membr Biol 157:159–167

    Article  CAS  PubMed  Google Scholar 

  • Csaba G, Lantos T (1973) Effect of hormones on Protozoa: studies on phagocytotic effect of histamine, 5-hydroxytryptamine and indoleacetic acid in Tetrahymena pyriformis. Cytobiologie 7:361–365

    CAS  Google Scholar 

  • Csaba G, Lantos T (1975) Effect of insulin on glucose uptake of protozoa. Experientia (Basel) 31:1097–1098

    Article  CAS  Google Scholar 

  • Csaba G, Pallinger E (2008) A general response to stressors by the unicellular Tetrahymena: effect of stress on the hormone levels. Cell Biochem Funct 26:797–800

    Article  CAS  PubMed  Google Scholar 

  • Depamphi ML, Adler J (1971) Attachment of flagellar basal bodies to cell envelope: specific attachment to outer, lipopolysaccharide membrane and cytoplasmic membrane. J Bacteriol 105:396–407

    Google Scholar 

  • Doughty MJ, Dryl S (1981) Control of ciliary activity in Paramecium: an analysis of chemosensory transduction in a eukaryotic unicellular organism. Prog Neurobiol 16:1–115

    Article  CAS  PubMed  Google Scholar 

  • Eckert R, Friedman K, Naitoh Y (1972) Sensory mechanisms in Paramecium. 1. Two components of electric response to mechanical stimulation of anterior surface. J Exp Biol 56:683

    CAS  PubMed  Google Scholar 

  • Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, Badger JH, Ren Q, Amedeo P, Jones KM et al (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4:1620–1642

    Article  CAS  Google Scholar 

  • Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA (1997) The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 13:457–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French JW (1940) Trial and error learning in Paramecium. J Exp Psychol 26:609–613

    Article  Google Scholar 

  • Hanzel TE, Rucker WB (1972) Trial and error learning in Paramecium: replication. Behav Biol 7:873

    Article  CAS  PubMed  Google Scholar 

  • Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33:9–19

    Article  CAS  PubMed  Google Scholar 

  • Hemmersbachkrause R, Briegleb W, Hader DP (1992) Swimming behavior of paramecium: first results with the low-speed centrifuge microscope (NIZEMI). Life Sciences and Space Research, vol xxiv (1). Gravitat Biol 12:113–116

    Google Scholar 

  • Hennessey T, Machemer H, Nelson DL (1985) Injected cyclic-AMP increases ciliary beat frequency in conjunction with membrane hyperpolarization. Eur J Cell Biol 36:153–156

    CAS  PubMed  Google Scholar 

  • Hess JF, Oosawa K, Matsumura P, Simon MI (1987) Protein phosphorylation is involved in bacterial chemotaxis. Proc Natl Acad Sci USA 84:7609–7613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess JF, Bourret RB, Simon MI (1988a) Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature (Lond) 336:139–143

    Article  CAS  Google Scholar 

  • Hess JF, Oosawa K, Kaplan N, Simon MI (1988b) Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell 53:79–87

    Article  CAS  PubMed  Google Scholar 

  • Iino T (1969) Genetics and chemistry of bacterial flagella. Bacteriol Rev 33:454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings HS (1899) The psychology of a protozoan. Am J Psychol 10:503–515

    Article  Google Scholar 

  • Jensen DD (1957a) Experiments on learning in Paramecia. Science 125:191–192

    Article  CAS  PubMed  Google Scholar 

  • Jensen DD (1957b) More on learning in Paramecia. Science 126:1341–1342

    Article  CAS  PubMed  Google Scholar 

  • Johnson WH (1929) The reactions of Paramecium to solutions of known hydrogen ion concentration. Biol Bull 57:199–224

    Article  CAS  Google Scholar 

  • Kennelly PJ, Potts M (1996) Fancy meeting you here! A fresh look at “prokaryotic” protein phosphorylation. J Bacteriol 178:4759–4764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klumpp S, Kleefeld G, Schultz JE (1983) Calcium calmodulin-regulated guanylate cyclase of the excitable ciliary membrane from Paramecium: dissociation of calmodulin by La-3+: calmodulin specificity and properties of the reconstituted guanylate cyclase. J Biol Chem 258:2455–2459

    Google Scholar 

  • Kondoh H, Ball CB, Adler J (1979) Identification of a methyl-accepting chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli. Proc Natl Acad Sci USA 76:260–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshland DE (1980) Bacterial chemotaxis in relation to neurobiology. Annu Rev Neurosci 3:43–75

    Article  CAS  PubMed  Google Scholar 

  • Kung C, Chang SY, Satow Y, Vanhouten J, Hansma H (1975) Genetic dissection of behavior in Paramecium. Science 188:898–904

    CAS  PubMed  Google Scholar 

  • Kuo SC, Koshland DE (1987) Roles of CHeY and CHeZ gene products in controlling flagellar rotation in bacterial chemotaxis of Escherichia coli. J Bacteriol 169:1307–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen J, Satir P (1991) Analysis of Ni2+-induced arrest of Paramecium axonemes. J Cell Sci 99:33–40

    CAS  PubMed  Google Scholar 

  • Larsen SH, Reader RW, Kort EN, Tso WW, Adler J (1974) Change in direction of flagellar rotation is basis of chemotactic response in Escherichia coli. Nature (Lond) 249:74–77

    Article  CAS  Google Scholar 

  • Leick V, Hellunglarsen P (1992) Chemosensory behavior of Tetrahymena. Bioessays 14:61–66

    Article  CAS  PubMed  Google Scholar 

  • Levit MN, Stock JB (2002) Receptor methylation controls the magnitude of stimulus–response coupling in bacterial chemotaxis. J Biol Chem 277:36760–36765

    Article  CAS  PubMed  Google Scholar 

  • Lupas A, Stock J (1989) Phosphorylation of an N-terminal regulatory domain activates the CHeB methylesterase in bacterial chemotaxis. J Biol Chem 264:17337–17342

    CAS  PubMed  Google Scholar 

  • Machemer H (1976) Interactions of membrane-potential and cations in regulation of ciliary activity in Paramecium. J Exp Biol 65:427–447

    CAS  PubMed  Google Scholar 

  • Macnab RM, Koshland DE (1972) Gradient-sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci USA 69:2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macnab R, Koshland DE (1974) Bacterial motility and chemotaxis: light-induced tumbling response and visualization of individual flagella. J Mol Biol 84:399–406

    Article  CAS  PubMed  Google Scholar 

  • Maihle NJ, Dedman JR, Means AR, Chafouleas JG, Satir BH (1981) Presence and indirect immunofluorescent localization of calmodulin in Paramecium tetraurelia. J Cell Biol 89:695–699

    Article  CAS  PubMed  Google Scholar 

  • Manson MD, Blank V, Brade G, Higgins CF (1986) Peptide chemotaxis in Escherichia coli involves the tap signal transducer and the dipeptide permease. Nature (Lond) 321:253–256

    Article  CAS  Google Scholar 

  • Naitoh Y (1966) Reversal response elicited in nonbeating cilia of Paramecium by membrane depolarization. Science 154:660

    Article  CAS  PubMed  Google Scholar 

  • Naitoh Y, Eckert R (1969a) Ciliary orientation: controlled by cell membrane or by intracellular fibrils. Science 166:1633

    Article  CAS  PubMed  Google Scholar 

  • Naitoh Y, Eckert R (1969b) Ionic mechanisms controlling behavioral responses of Paramecium to mechanical stimulation. Science 164:963

    Article  CAS  PubMed  Google Scholar 

  • Naitoh Y, Eckert R (1973) Sensory mechanisms in Paramecium. 2. Ionic basis of hyperpolarizing mechanoreceptor potential. J Exp Biol 59:53–65

    CAS  Google Scholar 

  • Naitoh Y, Kaneko H (1972) Reactivated Triton-extracted models of Paramecium: modification of ciliary movement by calcium ions. Science 176:523

    Article  CAS  Google Scholar 

  • Naitoh Y, Eckert R, Friedman K (1972) Regenerative calcium response in Paramecium. J Exp Biol 56:667

    CAS  PubMed  Google Scholar 

  • Nakaoka Y, Ooi H (1985) Regulation of ciliary reversal in Triton-extracted Paramecium by calcium and cyclic adenosine monophosphate. J Cell Sci 77:185–195

    CAS  PubMed  Google Scholar 

  • Nakatani I (1970) Effects of various chemicals on the behavior of Paramecium caudatum. J Fac Sci Hokkaido Univ Ser VI Zool 17:401–410

    Google Scholar 

  • Ninfa EG, Stock A, Mowbray S, Stock J (1991) Reconstitution of the bacterial chemotaxis signal transduction system from purified components. J Biol Chem 266:9764–9770

    CAS  PubMed  Google Scholar 

  • Oka T, Nakaoka Y, Oosawa F (1986) Changes in membrane potential during adaptation to external potassium ions in Paramecium caudatum. J Exp Biol 126:111–117

    CAS  Google Scholar 

  • Okumura H, Nishiyama SI, Sasaki A, Homma M, Kawagishi I (1998) Chemotactic adaptation is altered by changes in the carboxy-terminal sequence conserved among the major methyl-accepting chemoreceptors. J Bacteriol 180:1862–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill JB, Pert CB, Ruff MR, Smith CC, Higgins WJ, Zipser B (1988) Identification and characterization of the opiate receptor in the ciliated protozoan, Tetrahymena. Brain Res 450:303–315

    Article  PubMed  Google Scholar 

  • Ota IM, Varshavsky A (1993) A yeast protein similar to bacterial two-component regulators. Science 262:566–569

    Article  CAS  PubMed  Google Scholar 

  • Parkinson JS (2004) Signal amplification in bacterial chemotaxis through receptor teamwork. ASM News 70:575

    Google Scholar 

  • Preston RR, Vanhouten JL (1987) Chemoreception in Paramecium tetraurelia: acetate and folate-induced membrane hyperpolarization. J Comp Physiol A Sens Neural Behav Physiol 160:525–535

    Article  CAS  Google Scholar 

  • Preston RR, Saimi Y, Kung C (1990) Evidence for two K+ currents activated upon hyperpolarization of Paramecium tetraurelia. J Membr Biol 115:41–50

    Article  CAS  PubMed  Google Scholar 

  • Ramoino P, Milanese M, Candiani S, Diaspro A, Fato M, Usai C, Bonanno G (2010) Gamma-amino butyric acid (GABA) release in the ciliated protozoon Paramecium occurs by neuronal-like exocytosis. J Exp Biol 213:1251–1258

    Article  CAS  PubMed  Google Scholar 

  • Ramoino P, Candiani S, Pittaluga AM, Usai C, Gallus L, Ferrando S, Milanese M, Faimali M, Bonanno G (2014) Pharmacological characterization of NMDA-like receptors in the single-celled organism Paramecium primaurelia. J Exp Biol 217:463–471

    Article  CAS  PubMed  Google Scholar 

  • Reader RW, Tso WW, Springer MS, Goy MF, Adler J (1979) Pleiotropic aspartate taxis and serine taxis mutants of Escherichia coli. J Gen Microbiol 111:363–374

    Article  CAS  PubMed  Google Scholar 

  • Schultz JE, Klumpp S, Benz R, Schurhoffgoeters WJC, Schmid A (1992) Regulation of adenylyl cyclase from Paramecium by an intrinsic potassium conductance. Science 255:600–603

    Article  CAS  PubMed  Google Scholar 

  • Smith RA, Parkinson JS (1980) Overlapping genes at the CHeA locus of Escherichia coli. Proc Natl Acad Sci USA Biol Sci 77:5370–5374

    Article  CAS  Google Scholar 

  • Sommerville J, McTavish C (1982) The effect of temperature change on gene expression in Paramecium primaurelia. Biochim Biophys Acta 698:158–166

    Article  CAS  PubMed  Google Scholar 

  • Sourjik V, Berg HC (2002) Receptor sensitivity in bacterial chemotaxis. Proc Natl Acad Sci USA 99:123–127

    Article  CAS  PubMed  Google Scholar 

  • Springer WR, Koshland DE (1977) Identification of a protein methyltransferase as CheR gene product in bacterial sensing system. Proc Natl Acad Sci USA 74:533–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart RC, Roth AF, Dahlquist FW (1990) Mutations that affect control of the methylesterase activity of CheB, a component of the chemotaxis adaptation system in Escherichia coli. J Bacteriol 172:3388–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stock JB, Koshland DE (1978) Protein methylesterase involved in bacterial sensing. Proc Natl Acad Sci USA 75:3659–3663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockmeier CA (1997) Neurobiology of serotonin in depression and suicide. Neurobiol Suicide Bench Clin 836:220–232

    CAS  Google Scholar 

  • Van Houten JL, Yang WQ, Bergeron A (2000) Chemosensory signal transduction in Paramecium. J Nutr 130:946S–949S

    PubMed  Google Scholar 

  • Vanhouten J (1978) Two mechanisms of chemotaxis in Paramecium. J Comp Physiol 127:167–174

    Article  CAS  Google Scholar 

  • Vanhouten J (1979) Membrane potential changes during chemokinesis in Paramecium. Science 204:1100–1103

    Article  CAS  Google Scholar 

  • Vanhouten J (1994) Chemosensory transduction in eukaryotic microorganisms: trends for neuroscience. Trends Neurosci 17:62–71

    Article  CAS  Google Scholar 

  • Vanhouten J, Martel E, Kasch T (1982) Kinetic analysis of chemokinesis of Paramecium. J Protozool 29:226–230

    Article  CAS  Google Scholar 

  • Vanhouten JL, Cote BL, Zhang J, Baez J, Gagnon ML (1991) Studies of the cyclic adenosine-monophosphate chemoreceptor of Paramecium. J Membr Biol 119:15–24

    Article  CAS  Google Scholar 

  • Warrick HM, Taylor BL, Koshland DE (1977) Chemotactic mechanism of Salmonella typhimurium: preliminary mapping and characterization of mutants. J Bacteriol 130:223–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiederhold ML (1976) Mechanosensory transduction in sensory and motile cilia. Annu Rev Biophys Bioeng 5:39–62

    Article  CAS  PubMed  Google Scholar 

  • Wylie D, Stock A, Wong CY, Stock J (1988) Sensory transduction in bacterial chemotaxis involves phosphotransfer between ChE proteins. Biochem Biophys Res Commun 151:891–896

    Article  CAS  PubMed  Google Scholar 

  • Yang WQ, Braun C, Plattner H, Purvee J, VanHouten JL (1997) Cyclic nucleotides in glutamate chemosensory signal transduction of Paramecium. J Cell Sci 110:2567–2572

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Maegawa Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Maegawa, S. (2017). Molecular Characteristics of Neuron-like Functions in Single-Cell Organisms. In: Shigeno, S., Murakami, Y., Nomura, T. (eds) Brain Evolution by Design. Diversity and Commonality in Animals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56469-0_2

Download citation

Publish with us

Policies and ethics