Skip to main content

Brain Evolution as an Information Flow Designer: The Ground Architecture for Biological and Artificial General Intelligence

  • Chapter
  • First Online:
Brain Evolution by Design

Part of the book series: Diversity and Commonality in Animals ((DCA))

Abstract

For centuries, neuroscientists have identified a number of neural systems involved in sensory, motor, state control, and cognitive functions. Modern comparative studies have proposed their diversity, origins, and basic functionality across animal phyla. Despite a number of attempts, however, a common functional plan of the complex brain remains controversial. For example, there is currently no prominent theory of how neural networks are structurally comparable between phylogenetically distant animals such as vertebrates, octopuses, worms, and insects, in which there are distinguishably different brain architectures. This chapter attempts to identify the types of information flow patterns that were specialized during brain evolution, when these patterns appeared as a prototype, and how the flow systems have been shaped based on the common morphological architecture. In a notable case, a number of sensory associative centers show comparable patterns in mammalian, insect, and octopus brains, representing a common input and output flow of information. One can speculate that a common underlying structure is shared between various animals because of common functionalities that produce highly effective learning, memory, and autonomous cognitive tasks. Such an underlying structure could help establish a large-scale framework for comparison between phylogenetically distant animal brains and perhaps even form the groundwork for artificial general intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrens M, Li MJ, Orger MB, Robson DN, Schier AF, Engert F, Portugues R (2012) Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature (Lond) 485:471–479

    CAS  Google Scholar 

  • Arendt D (2008) The evolution of cell types in animals: emerging principles from molecular studies. Nat Rev Genet 9:868–882

    Article  CAS  PubMed  Google Scholar 

  • Arendt D, Nübler-Jung K (1996) Common ground plans in early development in mice and flies. Bioessays 18:255–258

    Article  CAS  PubMed  Google Scholar 

  • Arendt D, Tosches MA, Marlow H (2015) From nerve net to nerve ring, nerve cord and brain: evolution of the nervous system. Nat Rev Neurosci 17:61–72

    Article  CAS  Google Scholar 

  • Aristotle, De Anima [On the Soul] (350BCE) Delphi complete works of Aristotle, illustrated, Delphi ancient classics book 11, English edn. (2013) Amazon Ser Int, Inc

    Google Scholar 

  • Baars BJ (1988) A cognitive theory of consciousness. Cambridge University Press, New York

    Google Scholar 

  • Baars BJ (2002) The conscious access hypothesis: origins and recent evidence. Trends Cogn Sci 6:47–52

    Article  PubMed  Google Scholar 

  • Baars BJ, Franklin S, Ramsoy TZ (2013) Global workspace dynamics: cortical “binding and propagation” enables conscious contents. Front Psychol 4:200

    PubMed  PubMed Central  Google Scholar 

  • Bejan A, Lorente S (2008) Design with constructal theory. Wiley, Hoboken

    Book  Google Scholar 

  • Bejan A, Lorente S (2010) The constructal law of design and evolution in nature. Philos Trans R Soc Lond B 365:1335–1347

    Article  Google Scholar 

  • Bengio Y (2009) Learning deep architectures for AI. Found Trend Mach Learn 2:1–127

    Article  Google Scholar 

  • Block HD (1962) The perceptron: a model for brain functioning. Rev Mod Phys 34:123–135

    Article  Google Scholar 

  • Borden NM, Forseen SE, Cristian S (2016) Imaging anatomy of the human brain. A comprehensive atlas including adjacent structure. Demos Medical, New York

    Google Scholar 

  • Braitenberg V (1984) Vehicles: experiments in synthetic psychology. Bradford/MIT Press, Cambridge

    Google Scholar 

  • Bullock TH (1993) How are more complex brains different. Brain Behav Evol 41:88–96

    Article  CAS  PubMed  Google Scholar 

  • Bullock TH (2002) Grades in neural complexity: how large is the span? Integr Comp Biol 42:757–761

    Article  Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates, vol I, II. Freeman, London

    Google Scholar 

  • Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation, 2nd edn. Wiley-Liss, New York

    Book  Google Scholar 

  • Cajal SR (1890) New ideas on the structure of the nervous system in man and vertebrates. English translation, Swanson N, Swanson LW (1990) MIT Press, Cambridge

    Google Scholar 

  • Cajal SR (1917) Histologie du système nerveux de l’homme et des vertèbrès, 2 vols. Translated by Azoulay L, Maloine A, Paris. English translation, Swanson N, Swanson LW (1995) Histology of the nervous system of man and vertebrates, 2 vols. Oxford University Press, New York

    Google Scholar 

  • Crick F, Koch C (1990) Towards a neurobiological theory of consciousness. Semin Neurosci 2:273–304

    Google Scholar 

  • Damasio AR (2000) The feeling of what happens: body and emotion in the making of consciousness. Vintage Books, London

    Google Scholar 

  • Darmaillacq AS, Dickel L, Mather J (2014) Cephalopod cognition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dehaene S, Kerszberg M, Changeux JP (1998) A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci USA 95:14529–14534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denes AS, Jekely G, Steinmetz PR, Raible F, Snyman H, Prud’homme B, Ferrier DE, Balavoine G, Arendt D (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in Bilateria. Cell 129:277–288

    Article  CAS  PubMed  Google Scholar 

  • Descartes R (1644) The principles of philosophy. Translation with explanatory notes. Rodger V, Miller RP, Reprint edition (1983). Reidel, Dordrecht

    Google Scholar 

  • Dugas-Ford J, Rowell JJ, Ragsdale CW (2012) Cell-type homologies and the origins of the neocortex. Proc Natl Acad Sci USA 109:16974–16979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eames C, Eames R, Fleck G, Cohen IB, Staples R (1990) A computer perspective: background to the computer age. Revised subject edition. Harvard University Press, Harvard

    Google Scholar 

  • Ebbesson SOE (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res 213:179–212

    CAS  PubMed  Google Scholar 

  • Edelman DB, Seth AK (2009) Animal consciousness: a synthetic approach. Trends Neurosci 32:476–484

    Article  CAS  PubMed  Google Scholar 

  • Edelman GM, Tononi G (2000) A universe of consciousness: how matter becomes imagination. Basic Books, New York

    Google Scholar 

  • Edelman DB, Baars BJ, Seth AK (2005) Identifying hallmarks of consciousness in non-mammalian species. Conscious Cogn 14:169–187

    Article  PubMed  Google Scholar 

  • Faller S, Rothe BH, Todt C, Schmidt-Rhaesa A, Loesel R (2012) Comparative neuroanatomy of Caudofoveata, Solenogastres, Polyplacophora, and Scaphopoda (Mollusca) and its phylogenetic implications. Zoomorphology 131:149–170

    Article  Google Scholar 

  • Farris SM (2008) Evolutionary convergence of higher brain centers spanning the protostome-deuterostome boundary. Brain Behav Evol 72:106–122

    Article  PubMed  Google Scholar 

  • Farris SM, Strausfeld NJ (2001) Development of laminar organization in the mushroom bodies of the cockroach: Kenyon cell proliferation, outgrowth, and maturation. J Comp Neurol 439:331–351

    Article  CAS  PubMed  Google Scholar 

  • Feinberg TE, Mallatt J (2013) The evolutionary and genetic origins of consciousness in the Cambrian period over 500 million years ago. Front Psychol 4:667

    Article  PubMed  PubMed Central  Google Scholar 

  • Franklin S (2003) IDA: a conscious artifact? In: Holland O (ed) Machine consciousness. Imprint Academic, Exeter

    Google Scholar 

  • Franklin S, Strain S, Snaider J, McCall R, Faghihi U (2012) Global workspace theory, its LIDA model and the underlying neuroscience. Biol Insp Cogn Arch 1:32–43

    Google Scholar 

  • Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36:193–202

    Article  CAS  PubMed  Google Scholar 

  • Goerick C (2009) Towards cognitive robotics. In: Sendhoff B, Koerner E, Sporns O, Ritter H, Doya K (eds) Creating brain-like intelligence. From basic principles to complex intelligent systems. Springer, Heidelberg, pp 192–214

    Chapter  Google Scholar 

  • Grasso FW (2014) The octopus with two brains: how are distributed and central representations integrated in the octopus central nervous system? In: Darmaillacq A-S, Dickel L, Mather J (eds) Cephalopod cognition. Cambridge University, Cambridge, pp 94–122

    Chapter  Google Scholar 

  • Graves A, Wayne G, Danihelka I (2014) Neural turing machines. arXiv preprint arXiv:1410.5401

    Google Scholar 

  • Hanström B (1928) Vergleichende Anatomie des Nervensystems der Wirbellosen Tiere unter Beruecksichtigung Seiner Funktion. Julius Springer, New York

    Google Scholar 

  • Hartenstein V (2006) The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol 190:555–570

    Article  CAS  PubMed  Google Scholar 

  • Hatchuel A, Weil B (2009) C-K design theory: an advanced formulation. Res Eng Des 19:181–192

    Article  Google Scholar 

  • Hegel GWF (1977) Phenomenology of spirit. Translation by Miller AV, Findlay JN. Clarendon Press, Oxford

    Google Scholar 

  • Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275

    Article  CAS  PubMed  Google Scholar 

  • Hejnol A, Martindale MQ (2008) Acoel development supports a simple planula-like urbilaterian. Philos Trans R Soc Lond B 363:1493–1501

    Article  Google Scholar 

  • Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguñà J, Bailly X, Jondelius U, Wiens M, Müller WG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc Lond B 276:4261–4270

    Article  Google Scholar 

  • Hochner B (2010) Functional and comparative assessments of the octopus learning and memory system. Front Biosci 2:764–771

    Article  Google Scholar 

  • Hochner B, Shomrat T, Fiorito G (2006) The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biol Bull 210:308–317

    Article  PubMed  Google Scholar 

  • Holland ND (2003) Early central nervous system evolution: an era of skin brains? Nat Rev Neurosci 4:617–627

    Article  CAS  PubMed  Google Scholar 

  • Holland ND (2016) Nervous systems and scenarios for the invertebrate-to-vertebrate transition. Philos Trans R Soc B 371:0. doi:10.1098/rstb.2015.0047

  • Honegger KS, Campbell RA, Turner GC (2011) Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body. J Neurosci 31:11772–11785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubel DH, Wiesel TN (1963) Shape and arrangement of columns in cat’s striate cortex. J Physiol 165:559–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hume D (1748) An enquiry concerning human understanding: a critical edition. The Clarendon edition of the works of David Hume (2006), Beauchamp TL, ed. Oxford University Press, Oxford

    Google Scholar 

  • Husserl E (1913) Ideas pertaining to a pure phenomenology and to a phenomenological philosophy – first book: general introduction to a pure phenomenology, 1982. Kersten F, trans. Nijhoff Publisher, Hague

    Google Scholar 

  • Jarvis ED, Güntürkün O, Bruce L, Csillag A, Karten H, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Avian Brain Nomenclature Consortium (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH (ed) (2006) Evolution of nervous systems. Vol. 1. Theories, development, invertebrates. Elsevier Academic Press, Oxford

    Google Scholar 

  • Kant I (1781) Critique of pure reason. In: Complete works of Immanuel Kant. Translated into English by Meiklejohn JMD (1998). Cambridge University Press, Cambridge

    Google Scholar 

  • Kant I (1788) Critique of practical reason. In: Complete works of Immanuel Kant. Translated into English by Meiklejohn JMD (1998). Cambridge University Press, Cambridge

    Google Scholar 

  • Karten HJ (1997) Evolutionary developmental biology meets the brain: the origins of mammalian cortex. Proc Natl Acad Sci USA 94:2800–2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karten HJ (2013) Neocortical evolution: neuronal circuits arise independently of lamination. Curr Biol 7:12–15

    Article  CAS  Google Scholar 

  • Kohonen T (1995) Self-organizing maps. Springer, Heidelberg

    Book  Google Scholar 

  • Krubitzer L (2009) In search of a unifying theory of complex brain evolution. Ann NY Acad Sci 1156:44–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Laumer CE, Bekkouche N, Kerbl A, Goetz F, Neves RC, Sørensen MV, Kristensen RM, Hejnol A, Dunn CW, Giribet G, Worsaae K (2015) Spiralian phylogeny informs the evolution of microscopic lineages. Curr Biol 25:2000–2006

    Article  CAS  PubMed  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature (Lond) 521:436–444

    Article  CAS  Google Scholar 

  • Locke J (1690) An essay concerning human understanding. Penguin Classics, new edition (2008). Oxford University Press, Oxford

    Google Scholar 

  • Mareschal D, Shultz TR (1996) Generative connectionist networks and constructivist cognitive development. Cogn Dev 11:571–603

    Article  Google Scholar 

  • Mather JA (2008) Cephalopod consciousness: behavioural evidence. Conscious Cogn 17:37–48

    Article  PubMed  Google Scholar 

  • Merker B (2007) Consciousness without a cerebral cortex: a challenge for neuroscience and medicine. Behav Brain Sci 30:63–81, with discussion part pp 81–134

    PubMed  Google Scholar 

  • Minsky ML, Papert SA (1988) Perceptrons: an introduction to computational geometry, expanded edition. MIT Press, Cambridge

    Google Scholar 

  • Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature (Lond) 518:529–533

    Article  CAS  Google Scholar 

  • Moroz LL (2009) On the independent origins of complex brains and neurons. Brain Behav Evol 74:177–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Mudrik L, Faivre N, Koch C (2014) Information integration without awareness. Trends Cogn Sci 18:488–496

    Article  PubMed  Google Scholar 

  • Nguyen JP, Frederick B, Shipleya FB, Linderc AN, Plummer GS, Liu M, Setru SU, Shaevit JW, Leifer AM (2015) Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proc Natl Acad Sci USA 113(8):E1074–E1081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (1998) The central nervous system of vertebrates, 3rd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Nixon M, Young JZ (2003) The brains and lives of cephalopods. University Press, Oxford

    Google Scholar 

  • Northcutt RG (2012) Evolution of centralized nervous systems: two schools of evolutionary thought. Proc Natl Acad Sci U S A 109:10626–10633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pani AM, Mullarkey EE, Aronowicz J, Assimacopoulos S, Grove EA, Lowe CJ (2012) Ancient deuterostome origins of vertebrate brain signaling centres. Nature (Lond) 483:289–294

    Article  CAS  Google Scholar 

  • Pfeifer R, Gomez G (2009) Morphological computation: connecting brain, body, and environment. In: Sendhoff B et al (eds) Creating brain-like intelligence. Springer, Berlin, pp 66–83

    Chapter  Google Scholar 

  • Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and biological inspired robotics. Science 318:1088–1093

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, Vacelet J, Renard E, Houliston E, Queinnec E, Silva CD, Wincker P, Guyader HL, Leys S, Jackson DJ, Schreiber F, Erpenbeck D, Morgenstern B, Worheide G, Manuel M (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19:706–712

    Article  CAS  PubMed  Google Scholar 

  • Plato (380BCE) Republic, Delphi complete works of Plato, illustrated, Delphi ancient classics book 5, English edition (2012) Amazon Serv Int, Inc

    Google Scholar 

  • Poon CS, Shah JV (1998) Hebbian learning in parallel and modular memories. Biol Cybern 78:79–86

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Rubenstein JL (2015) A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model. Front Neuroanat 9:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Reichert H, Simeone A (2001) Developmental genetic evidence for a monophyletic origin of the bilaterian brain. Philos Trans R Soc Lond B 356:1533–1544

    Article  CAS  Google Scholar 

  • Reisinger E (1972) Die Evolution des Orthogons der Spiralier und das Archicoelomatenproblem. Zeitsch Zool System Evol 10:1–43

    Article  Google Scholar 

  • Roper CFE, Sweeney MJ (1984) FAO species catalogue. Vol 3. Cephalopods of the world. An annotated and illustrated catalogue of species of interest to fisheries. FAO, Roma

    Google Scholar 

  • Rosenblatt F (1957) The perceptron – a perceiving and recognizing automaton. Report 85-460-1, Cornell Aeronautical Lab, New York

    Google Scholar 

  • Rosenblatt F (1962) Principles of neurodynamics. Spartan, New York

    Google Scholar 

  • Roth G (2013) The long evolution of brains and minds. Springer, Heidelberg

    Book  Google Scholar 

  • Roth G, Wullimann MF (2001) Brain evolution and cognition. Wiley-Liss, Berlin

    Google Scholar 

  • Rubenstein JL, Shimamura K, Martinez S, Puelles L (1998) Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21:445–478

    Article  CAS  PubMed  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986a) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, PDP research group (eds) Parallel distributed processing: explorations in the microstructure of cognition. Volume 1: Foundations. MIT Press, Cambridge, pp 318–362

    Google Scholar 

  • Rumelhart DE, McClelland JL, The PDP research group (eds) (1986b) Parallel distributed processing: explorations in the microstructure of cognition. Volume 1: Foundations. MIT Press, Cambridge

    Google Scholar 

  • Russell B (1921) The analysis of mind. George Allen & Unwin, London

    Google Scholar 

  • Schmidt-Rhaesa A, Harzsch S, Purschke G (2016) Structure and evolution of invertebrate nervous systems. Oxford University Press, Oxford

    Google Scholar 

  • Schneider GE (2014) Brain structure and its origins: in development and in evolution of behavior and the mind. MIT Press, Cambridge

    Google Scholar 

  • Sendhoff B, Koerner E, Sporns O, Ritter H, Doya K (eds) (2009) Creating brain-like intelligence. From basic principles to complex intelligent systems. Springer, Heidelberg

    Google Scholar 

  • Shanahan M (2006) A cognitive architecture that combines internal simulation with a global workspace. Conscious Cogn 15:433–449

    Article  PubMed  Google Scholar 

  • Sherman SM (2007) The thalamus is more than just a relay. Curr Opin Neurobiol 17:417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman SM, Guillery RW (1998) On the actions that one nerve cell can have on another: distinguishing ‘drivers’ from ‘modulators’. Proc Natl Acad Sci USA 95:7121–7126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B 357:1695–1708

    Article  Google Scholar 

  • Sherman SM, Guillery RW (2006) Exploring the thalamus, 2nd edn. Academic, San Diego

    Google Scholar 

  • Sherman SM, Guillery RW (2013) Functional connections of cortical areas. A new view from the thalamus. MIT Press, Cambridge

    Book  Google Scholar 

  • Shigeno S, Sasaki T, Boletzky SV (2010) The origins of cephalopod body plans: a geometrical and developmental basis for the evolution of vertebrate-like organ systems. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods—present and past. Tokai University Press, Tokyo, pp 23–34

    Google Scholar 

  • Shigeno S, Parnaik R, Albertin C, Ragsdale C (2015) Evidence for a cordal, not ganglionic, pattern of cephalopod brain neurogenesis. Zool Lett 1:26

    Article  Google Scholar 

  • Shomrat T, Graindorge N, Bellanger C, Fiorito G, Loewenstein Y, Hochner B (2011) Alternative sites of synaptic plasticity in two homologous “fan-out fan-in” learning and memory networks. Curr Biol 21:1773–1782

    Article  CAS  PubMed  Google Scholar 

  • Spinoza B de (1677). The ethics. Translated by GHR Parkinson. English new edition (1993). Tuttle Publishing, North Clarendon

    Google Scholar 

  • Strausfeld NJ (2012) Arthropod brains: evolution, functional elegance and historical significance. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Strausfeld NJ, Hirth F (2013) Deep homology of arthropod central complex and vertebrate basal ganglia. Science 340:157–161

    Article  CAS  PubMed  Google Scholar 

  • Striedter GF (2005) Principles of brain evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Sugahara F, Pascual-Anaya J, Oisi Y, Kuraku S, Aota S, Adachi N, Takagi W, Sato N, Murakami Y, Kuratani S (2016) Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain. Nature (Lond) 10:1038

    Google Scholar 

  • Swanson LW (2003). Brain architecture: understanding the basic plan. 1st Edition. New York: Oxford University Press, Japanese translation 2010

    Google Scholar 

  • Swanson LW (2007) Quest for the basic plan of nervous system circuitry. Brain Res Rev 55:356–372

    Article  PubMed  Google Scholar 

  • Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D (2007) Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129:1389–1400

    Article  CAS  PubMed  Google Scholar 

  • Tomer AS, Denes K, Tessmar-Raible K, Arendt D (2010) Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142:800–809

    Article  CAS  PubMed  Google Scholar 

  • Tononi G (2004) An information integration theory of consciousness. BMC Neurosci 5:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Tononi G (2008) Consciousness as integrated information: a provisional manifesto. Biol Bull 215:216–242

    Article  PubMed  Google Scholar 

  • Voicu H (2008) The cerebellum: an incomplete multilayer perceptron? Neurocomputing 72:592–599

    Article  Google Scholar 

  • Wells MJ (1978) Octopus: physiology and behaviour of an advanced invertebrate. Chapman & Hall, London

    Book  Google Scholar 

  • Wolff GH, Strausfeld NJ (2016) Genealogical correspondence of a forebrain centre implies an executive brain in the protostome–deuterostome bilaterian ancestor. Philos Trans R Soc B 371:20150055

    Article  CAS  Google Scholar 

  • Wollesen T, Rodríguez Monje SV, Todt C, Degnan BM, Wanninger A (2015) Ancestral role of Pax2/5/8 in molluscan brain and multimodal sensory system development. BMC Evol Biol 15:231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young JZ (1965) The central nervous system of Nautilus. Philos Trans R Soc Lond B 249:1–25

    Article  Google Scholar 

  • Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Oxford University Press, Oxford

    Google Scholar 

  • Young JZ (1977) Brain, behaviour and evolution of cephalopods. Symp Zool Soc Lond 38:377–434

    Google Scholar 

  • Young JZ (1995) Multiple matrices in the memory system of Octopus. In: Abbott JN, Williamson R, Maddock L (eds) Cephalopod neurobiology. Oxford University Press, Oxford, pp 431–443

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Shigeno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Shigeno, S. (2017). Brain Evolution as an Information Flow Designer: The Ground Architecture for Biological and Artificial General Intelligence. In: Shigeno, S., Murakami, Y., Nomura, T. (eds) Brain Evolution by Design. Diversity and Commonality in Animals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56469-0_19

Download citation

Publish with us

Policies and ethics