Skip to main content

Organisational Principles of Connectomes: Changes During Evolution and Development

  • Chapter
  • First Online:
Brain Evolution by Design

Part of the book series: Diversity and Commonality in Animals ((DCA))

Abstract

The set of neural connections in an organism is now called the connectome. Using recent noninvasive techniques such as diffusion tensor imaging and traditional invasive techniques for tract tracing has uncovered a wide range of connectomes from Caenorhabditis elegans and Drosophila melanogaster to cat, mouse, rat, macaque, and human. We can therefore start to look at organisational changes during evolution. At the same time cell lineage information and measurements at different time steps allow us to observe network changes during individual, ontogenetic development. We find that the structure of a network is closely linked to its function, with distinct functional components first leading to network modules and, after the rise of further specialisation, to a hierarchical architecture with modules at different levels of network organisation. We first describe concepts that are used to characterize complex networks, then move on to briefly discuss computational models for development and evolution, before showing how network features change during the evolution and development of brain networks. We conclude with future challenges in the field of connectome development and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achacoso TB, Yamamoto WS (1992) AY’s neuroanatomy of C. elegans for computation. CRC Press, Boca Raton

    Google Scholar 

  • Amaral LAN, Scala A, Barthélémy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci USA 97(21):11149–11152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball G, Aljabar P, Zebari S, Tusor N, Arichi T, Merchant N, Robinson EC, Ogundipe E, Rueckert D, Edwards AD, Counsell SJ (2014) Rich-club organization of the newborn human brain. Proc Natl Acad Sci USA 111(20):7456–7461. doi:10.1073/pnas.1324118111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  Google Scholar 

  • Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28(37):9239–9248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer R, Zubler F, Hauri A, Muir DR, Douglas RJ (2012) Developmental origin of patchy axonal connectivity in the neocortex: a computational model. Cereb Cortex. doi:10.1093/cercor/bhs327

    PubMed  PubMed Central  Google Scholar 

  • Bauer R, Zubler F, Pfister S, Hauri A, Pfeiffer M, Muir DR, Douglas RJ (2014) Developmental self-construction and -configuration of functional neocortical neuronal networks. PLoS Comput Biol 10(12):e1003994. doi:10.1371/journal.pcbi.1003994

    Article  PubMed  PubMed Central  Google Scholar 

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349

    CAS  PubMed  Google Scholar 

  • Buzas P, Kovacs K, Ferecsko AS, Budd JM, Eysel UT, Kisvarday ZF (2006) Model-based analysis of excitatory lateral connections in the visual cortex. J Comp Neurol 499(6):861–881. doi:10.1002/cne.21134

    Article  PubMed  Google Scholar 

  • Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A, Pulokas J, Tomancak P, Hartenstein V (2010) An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol 8(10):e1000502

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatterjee N, Sinha S (2008) Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans. Prog Brain Res 168:145–153. doi:10.1016/S0079-6123(07)68012-1

    Article  PubMed  Google Scholar 

  • Collin G, van den Heuvel MP (2013) The ontogeny of the human connectome: development and dynamic changes of brain connectivity across the life span. Neuroscientist. doi:10.1177/1073858413503712

    PubMed  Google Scholar 

  • Collin G, Sporns O, Mandl RC, van den Heuvel MP (2013) Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb Cortex. doi:10.1093/cercor/bht064

    PubMed  PubMed Central  Google Scholar 

  • Costa LF, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56(1):167–242

    Article  Google Scholar 

  • Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P, Bullmore ET (2014) The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain Journal Neurol 137(8):2382–2395. doi:10.1093/brain/awu132

  • da Costa Fontoura L, Kaiser M, Hilgetag CC (2007) Predicting the connectivity of primate cortical networks from topological and spatial node properties. BMC Syst Biol 1:16

    Article  Google Scholar 

  • Daianu M, Dennis EL, Jahanshad N, Nir TM, Toga AW, Jack CR, Weiner MW, Thompson PM, Initia ADN (2013) Alzheimer’s disease disrupts rich club organization in brain connectivity networks. I S Biomed Imaging 2013:266–269

    Google Scholar 

  • de Reus MA, van den Heuvel MP (2013) Rich club organization and intermodule communication in the cat connectome. J Neurosci 33(32):12929–12939. doi:10.1523/JNEUROSCI.1448-13.2013

    Article  PubMed  Google Scholar 

  • Ebbesson SOE (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res 213:179–212

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE (1984) Evolution and ontogeny of neural circuits. Behav Brain Sci 7(3):321–331

    Article  Google Scholar 

  • Felleman DJ, van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  CAS  PubMed  Google Scholar 

  • Gauci J, Stanley KO (2010) Autonomous evolution of topographic regularities in artificial neural networks. Neural Comput 22(7):1860–1898. doi:10.1162/neco.2010.06-09-1042

    Article  PubMed  Google Scholar 

  • Gilbert CD, Wiesel TN (1983) Clustered intrinsic connections in cat visual cortex. J Neurosci 3(5):1116–1133

    CAS  PubMed  Google Scholar 

  • Goymer P (2008) Network biology: why do we need hubs? Nat Rev Genet 9(9):650

    Article  CAS  PubMed  Google Scholar 

  • Grayson DS, Ray S, Carpenter S, Iyer S, Dias TG, Stevens C, Nigg JT, Fair DA (2014) Structural and functional rich club organization of the brain in children and adults. PLoS One 9(2):e88297. doi:10.1371/journal.pone.0088297

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159. doi:10.1371/journal.pbio.0060159

  • Harriger L, van den Heuvel MP, Sporns O (2012) Rich club organization of macaque cerebral cortex and its role in network communication. PLoS One 7(9):e46497. doi:10.1371/journal.pone.0046497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10):2407–2419. doi:10.1093/cercor/bhl149

    Article  PubMed  Google Scholar 

  • Hilgetag CC, Hutt MT (2014) Hierarchical modular brain connectivity is a stretch for criticality. Trends Cogn Sci 18(3):114–115. doi:10.1016/j.tics.2013.10.016

    Article  PubMed  Google Scholar 

  • Hilgetag CC, Kaiser M (2004) Clustered organization of cortical connectivity. Neuroinformatics 2(3):353–360

    Article  PubMed  Google Scholar 

  • Hilgetag CC, O’Neill MA, Young MP (2000) Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philos Trans R Soc Lond Ser B 355:71–89

    Article  CAS  Google Scholar 

  • Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci USA 107(29):13135–13140. doi:10.1073/pnas.1001229107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hintze A, Adami C (2008) Evolution of complex modular biological networks. PLoS Comput Biol 4(2):e23. doi:10.1371/journal.pcbi.0040023

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang K, Hallquist MN, Luna B (2012) The development of hub architecture in the human functional brain network. Cereb Cortex. doi:10.1093/cercor/bhs227

    PubMed  PubMed Central  Google Scholar 

  • Ito M, Masuda N, Shinomiya K, Endo K, Ito K (2013) Systematic analysis of neural projections reveals clonal composition of the Drosophila brain. Curr Biol 23(8):644–655. doi:10.1016/j.cub.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  • Jeong H, Tombor B, Albert R, Oltwal ZN, Barabási A-L (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  CAS  PubMed  Google Scholar 

  • Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  CAS  PubMed  Google Scholar 

  • Kaiser M (2011) A tutorial in connectome analysis: topological and spatial features of brain networks. Neuroimage 57(3):892–907

    Article  PubMed  Google Scholar 

  • Kaiser M (2015) Neuroanatomy: connectome connects fly and Mammalian brain networks. Curr Biol 25(10):R416–R418

    Article  CAS  PubMed  Google Scholar 

  • Kaiser M, Hilgetag CC (2004a) Modelling the development of cortical networks. Neurocomputing 58–60:297–302

    Article  Google Scholar 

  • Kaiser M, Hilgetag CC (2004b) Spatial growth of real-world networks. Phys Rev E Stat Nonlinear Soft Matter Phys 69(3):036103

    Google Scholar 

  • Kaiser M, Varier S (2011) Evolution and development of brain networks: from Caenorhabditis elegans to Homo sapiens. Netw Comput Neural Syst 22:143–147

    Google Scholar 

  • Kaiser M, Martin R, Andras P, Young MP (2007) Simulation of robustness against lesions of cortical networks. Eur J Neurosci 25(10):3185–3192. doi:10.1111/j.1460-9568.2007.05574.x

  • Kaiser M, Hilgetag CC, Kötter R (2010) Hierarchy and dynamics of neural networks. Front Neuroinform 4:112. doi:10.3389/fninf.2010.00112

    Article  PubMed  PubMed Central  Google Scholar 

  • Karbowski J (2001) Optimal wiring principle and plateaus in the degree of separation for cortical neurons. Phys Rev Lett 86(16):3674–3677. doi:10.1103/PhysRevLett.86.3674

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Kaiser M (2014) From Caenorhabditis elegans to the human connectome: a specific modular organization increases metabolic, functional and developmental efficiency. Philos Trans R Soc Lond B Biol Sci 369:1653. doi:10.1098/rstb.2013.0529

    Article  Google Scholar 

  • Koene RA, Tijms B, van Hees P, Postma F, de Ridder A, Ramakers GJ, van Pelt J, van Ooyen A (2009) NETMORPH: a framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies. Neuroinformatics 7(3):195–210. doi:10.1007/s12021-009-9052-3

    Article  PubMed  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701

    Article  CAS  PubMed  Google Scholar 

  • Lim S, Han CE, Uhlhaas PJ, Kaiser M (2013) Preferential detachment during human brain development: age- and sex-specific structural connectivity in diffusion tensor imaging (DTI). Cereb Cortex Adv Online. doi:10.1093/cercor/bht333

    Google Scholar 

  • Louf R, Jensen P, Barthelemy M (2013) Emergence of hierarchy in cost-driven growth of spatial networks. Proc Natl Acad Sci USA. doi:10.1073/pnas.1222441110

    PubMed  PubMed Central  Google Scholar 

  • Masuda N, Aihara K (2004) Global and local synchrony of coupled neurons in small-world networks. Biol Cybern 90(4):302–309. doi:10.1007/s00422-004-0471-9

    Article  PubMed  Google Scholar 

  • McAuley JJ, Costa LDF, Caetano TS (2007) Rich-club phenomenon across complex network hierarchies. Appl Phys Lett 91(8). doi:10.1063/1.27723951

  • Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4:200. doi:10.3389/fnins.2010.00200

    Article  PubMed  PubMed Central  Google Scholar 

  • Milgram S (1967) The small-world problem. Psychol Today 1:60–67

    Google Scholar 

  • Mitchison G, Crick F (1982) Long axons within the striate cortex: their distribution, orientation, and patterns of connection. Proc Natl Acad Sci USA 79(11):3661–3665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256

    Article  Google Scholar 

  • Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103(23):8577–8582. doi:10.1073/pnas.0601602103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisbach F, Kaiser M (2007) Developmental time windows for spatial growth generate multiple-cluster small-world networks. Eur Phys J B 58(2):185–191

    Article  CAS  Google Scholar 

  • Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508(7495):207–214. doi:10.1038/nature13186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravasz E, Barabási A-L (2003) Hierarchical organization in complex networks. Phys Rev E 67:026112

    Article  Google Scholar 

  • Ray S, Miller M, Karalunas S, Robertson C, Grayson DS, Cary RP, Hawkey E, Painter JG, Kriz D, Fombonne E, Nigg JT, Fair DA (2014) Structural and functional connectivity of the human brain in autism spectrum disorders and attention-deficit/hyperactivity disorder: a rich club-organization study. Hum Brain Mapp 35(12):6032–6048. doi:10.1002/hbm.22603

    Article  PubMed  PubMed Central  Google Scholar 

  • Rockland KS, Lund JS (1982) Widespread periodic intrinsic connections in the tree shrew visual cortex. Science 215(4539):1532–1534

    Article  CAS  PubMed  Google Scholar 

  • Rockland KS, Lund JS (1983) Intrinsic laminar lattice connections in primate visual cortex. J Comp Neurol 216(3):303–318. doi:10.1002/cne.902160307

    Article  CAS  PubMed  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069. doi:S1053-8119(09)01074-X [pii] 10.1016/j.neuroimage.2009.10.003

    Google Scholar 

  • Scannell JW, Blakemore C, Young MP (1995) Analysis of connectivity in the cat cerebral cortex. J Neurosci 15(2):1463–1483

    CAS  PubMed  Google Scholar 

  • Semendeferi K, Teffer K, Buxhoeveden DP, Park MS, Bludau S, Amunts K, Travis K, Buckwalter J (2011) Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb Cortex 21(7):1485–1497. doi:10.1093/cercor/bhq191

    Article  PubMed  Google Scholar 

  • Senden M, Deco G, de Reus MA, Goebel R, van den Heuvel MP (2014) Rich club organization supports a diverse set of functional network configurations. NeuroImage 96:174–182. doi:10.1016/j.neuroimage.2014.03.066

    Article  PubMed  Google Scholar 

  • Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, Greenstein D, Clasen L, Evans A, Rapoport JL (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28(14):3586–3594

    Article  CAS  PubMed  Google Scholar 

  • Sherwood CC, Subiaul F, Zawidzki TW (2008) A natural history of the human mind: tracing evolutionary changes in brain and cognition. J Anat 212(4):426–454. doi:10.1111/j.1469-7580.2008.00868.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Sporns O (2013) The human connectome: origins and challenges. Neuroimage. doi:10.1016/j.neuroimage.2013.03.023

    Google Scholar 

  • Sporns O, Bullmore ET (2014) From connections to function: the mouse brain connectome atlas. Cell 157(4):773–775. doi:10.1016/j.cell.2014.04.023

    Article  CAS  PubMed  Google Scholar 

  • Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2(2):145–162. doi:10.1385/NI:2:2:145

  • Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8(9):418–425

    Article  PubMed  Google Scholar 

  • Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42. doi:10.1371/journal.pcbi.0010042

    Article  PubMed  PubMed Central  Google Scholar 

  • Stam CJ (2014) Modern network science of neurological disorders. Nat Rev Neurosci 15(10):683–695. doi:10.1038/nrn3801

    Article  CAS  PubMed  Google Scholar 

  • Stanley KO, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evol Comput 10(2):99–127. doi:10.1162/106365602320169811

    Article  PubMed  Google Scholar 

  • Torben-Nielsen B, De Schutter E (2014) Context-aware modeling of neuronal morphologies. Front Neuroanat 8:92. doi:10.3389/fnana.2014.00092

    Article  PubMed  PubMed Central  Google Scholar 

  • Towlson EK, Vertes PE, Ahnert SE, Schafer WR, Bullmore ET (2013) The rich club of the C. elegans neuronal connectome. J Neurosci 33(15):6380–6387. doi:10.1523/JNEUROSCI.3784-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):15775–15786. doi:10.1523/jneurosci.3539-11.2011

    Article  PubMed  Google Scholar 

  • van den Heuvel MP, Kahn RS, Goni J, Sporns O (2012) High-cost, high-capacity backbone for global brain communication. Proc Natl Acad Sci USA 109(28):11372–11377. doi:10.1073/pnas.1203593109

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel MP, Kersbergen KJ, de Reus MA, Keunen K, Kahn RS, Groenendaal F, de Vries LS, Benders MJ (2014) The neonatal connectome during preterm brain development. Cereb Cortex. doi:10.1093/cercor/bhu095

    PubMed Central  Google Scholar 

  • Van Hooser SD, Heimel JA, Chung S, Nelson SB (2006) Lack of patchy horizontal connectivity in primary visual cortex of a mammal without orientation maps. J Neurosci 26(29):7680–7692. doi:10.1523/JNEUROSCI.0108-06.2006

    Article  PubMed  Google Scholar 

  • Varier S, Kaiser M (2011) Neural development features: spatio-temporal development of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7:e1001044. doi:10.1371/journal.pcbi.1001044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbancsics P, Stanley KO (2011) Constraining connectivity to encourage modularity in hyperNEAT. Gecco-2011: proceedings of the 13th annual genetic and evolutionary computation conference, pp 1483–1490

    Google Scholar 

  • Warren DE, Power JD, Bruss J, Denburg NL, Waldron EJ, Sun H, Petersen SE, Tranel D (2014) Network measures predict neuropsychological outcome after brain injury. Proc Natl Acad Sci USA 111(39):14247–14252. doi:10.1073/pnas.1322173111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314(1165):1–340

    Article  CAS  PubMed  Google Scholar 

  • Young MP (1992) Objective analysis of the topological organization of the primate cortical visual system. Nature 358(6382):152–155

    Article  CAS  PubMed  Google Scholar 

  • Zamora-Lopez G, Zhou C, Kurths J (2010) Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front Neuroinform 4:1. doi:10.3389/neuro.11.001.2010

    PubMed  PubMed Central  Google Scholar 

  • Zubler F, Douglas R (2009) A framework for modeling the growth and development of neurons and networks. Front Comput Neurosci 3:25. doi:10.3389/neuro.10.025.2009

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Engineering and Physical Sciences Research Council of the United Kingdom (EP/K026992/1) as part of the Human Brain Development Project (http://www.greenbrainproject.org). R.B. was also supported by the Medical Research Council of the United Kingdom (MR/N015037/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Kaiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Bauer, R., Kaiser, M. (2017). Organisational Principles of Connectomes: Changes During Evolution and Development. In: Shigeno, S., Murakami, Y., Nomura, T. (eds) Brain Evolution by Design. Diversity and Commonality in Animals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56469-0_17

Download citation

Publish with us

Policies and ethics