Skip to main content

The Evolution and Function of Sleep

  • Chapter
  • First Online:
Brain Evolution by Design

Part of the book series: Diversity and Commonality in Animals ((DCA))

Abstract

Sleep is a common physiological state appearing in the everyday life of humans and other animals. In humans, sleep occupies approximately one third of our whole lifetime. People have thus kept asking the question of why we sleep. Sleep deprivation in rats results in lethality, indicating its essential roles (Rechtschaffen A, Bergmann BM, Sleep 25:18–24, 2002; Rechtschaffen A, Bergmann BM, Everson CA, Kushida CA, Gilliland MA, Sleep 12:68–87, 1989). From the aspect of evolution, sleep or sleep-like states are conserved across diverse animal species, implying an existent function for fulfilling a common purpose that may benefit the survival of animals. Up to now, however, the function and mechanism of sleep are still largely unknown. Recently, simple genetic animal models including fruit flies (Drosophila melanogaster), roundworms (Caenorhabditis elegans), and zebrafish (Danio rerio) have been actively studied to reveal the evolutionarily conserved components of sleep, which may lead to solving the fundamental question about the evolutionary origin of sleep (Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, Pack AI, Neuron 25:129–138, 2000; Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You YJ, Sundaram MV, Pack AI, Nature 451:569–572, 2008; Shaw PJ, Cirelli C, Greenspan RJ, Tononi G, Science 287:1834–1837, 2000; Singh K, Ju JY, Walsh MB, DiIorio MA, Hart AC, Sleep 37:1439–1451, 2014; Zhdanova IV, Wang SY, Leclair OU, Danilova NP, Brain Res 903:263–268, 2001). In addition, with the development of new techniques such as two-photon microscopy, optogenetics, and pharmacogenetics, researchers have obtained more ability to observe and manipulate neurons or their activity. Partly owing to the breakthrough of such new tools, researchers have found some evidence suggesting that sleep serves several functions including memory consolidation, clearance of brain metabolites, spine remodeling, and brain development (Bushey D, Tononi G, Cirelli C, Science 332:1576–1581, 2011; Donlea JM, Thimgan MS, Suzuki Y, Gottschalk L, Shaw PJ, Science 332:1571–1576, 2011; Kayser MS, Yue Z, Sehgal A, Science 344:269–274, 2014; Rasch B, Buchel C, Gais S, Born J, Science 315:1426–1429, 2007; Rechtschaffen A, Bergmann BM, Everson CA, Kushida CA, Gilliland MA, Sleep 12:68–87, 1989; Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, et al. Science 342:373–377, 2013; Yang G, Lai CS, Cichon J, Ma L, Li W, Gan WB, Science 344:1173–1178, 2014). These studies have shown the relationship between sleep and other biological processes in different animals, and it further brings us to the question of whether the function of sleep is only for one purpose or is for multiple purposes. Up to now, our knowledge about sleep seems to be merely the tip of the iceberg. Further research is needed to understand the general function of sleep across species.

Here, we first introduce general criteria for sleep, which allows its definition in animals other than mammals (Sect. 15.1). Then we introduce REM sleep and non-REM sleep, which are the two major sleep stages of mammalian and avian sleep (Sect. 15.2), and introduce studies and hypotheses related to how they evolved (Sect. 15.3). Next, we briefly introduce sleep in aquatic mammals, which have made a unique change from their ancestral mammals to adapt to their lifestyle (Sect. 15.4). Then we introduce the current progress in studies using simple genetic animal models, namely, zebrafish, fruit flies, and roundworms (Sect. 15.5 and Sect. 15.6). Finally, we compare the suggested functions of sleep between mammals and invertebrate animals (Sect. 15.7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424

    Article  CAS  PubMed  Google Scholar 

  • Agosto J, Choi JC, Parisky KM, Stilwell G, Rosbash M, Griffith LC (2008) Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat Neurosci 11:354–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allison T, Van Twyver H, Goff WR (1972) Electrophysiological studies of the echidna, Tachyglossus aculeatus. I. Waking and sleep. Arch Ital Biol 110:145–184

    CAS  PubMed  Google Scholar 

  • Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, Fuller PM (2014) The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat Neurosci 17:1217–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andretic R, van Swinderen B, Greenspan RJ (2005) Dopaminergic modulation of arousal in Drosophila. Curr Biol 15:1165–1175

    Article  CAS  PubMed  Google Scholar 

  • Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–274

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner A, Dietzel M, Saletu B, Wolf R, Campos-Barros A, Graf KJ, Kurten I, Mannsmann U (1993) Influence of partial sleep deprivation on the secretion of thyrotropin, thyroid hormones, growth hormone, prolactin, luteinizing hormone, follicle stimulating hormone, and estradiol in healthy young women. Psychiatry Res 48:153–178

    Article  CAS  PubMed  Google Scholar 

  • Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH (2002) The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci 16:1959–1973

    Article  PubMed  Google Scholar 

  • Boutrel B, Monaca C, Hen R, Hamon M, Adrien J (2002) Involvement of 5-HT1A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: studies in 5-HT1A knock-out mice. J Neurosci 22:4686–4692

    CAS  PubMed  Google Scholar 

  • Bushey D, Tononi G, Cirelli C (2011) Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 332:1576–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell SS, Tobler I (1984) Animal sleep: a review of sleep duration across phylogeny. Neurosci Biobehav Rev 8:269–300

    Article  CAS  PubMed  Google Scholar 

  • Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea L (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13:1526–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauvette S, Seigneur J, Timofeev I (2012) Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity. Neuron 75:1105–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Chatzigeorgiou M, Taylor KP, Schafer WR, Kaplan JM (2013) Analysis of NPR-1 reveals a circuit mechanism for behavioral quiescence in C. elegans. Neuron 78:869–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirelli C, Bushey D, Hill S, Huber R, Kreber R, Ganetzky B, Tononi G (2005) Reduced sleep in Drosophila Shaker mutants. Nature 434:1087–1092

    Article  CAS  PubMed  Google Scholar 

  • Crochet S, Onoe H, Sakai K (2006) A potent non-monoaminergic paradoxical sleep inhibitory system: a reverse microdialysis and single-unit recording study. Eur J Neurosci 24:1404–1412

    Article  PubMed  Google Scholar 

  • Crocker A, Sehgal A (2008) Octopamine regulates sleep in Drosophila through protein kinase A-dependent mechanisms. J Neurosci 28:9377–9385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322–327

    Article  PubMed  PubMed Central  Google Scholar 

  • Dement W (1958) The occurrence of low voltage, fast, electroencephalogram patterns during behavioral sleep in the cat. Electroencephalogr Clin Neurophysiol 10:291–296

    Article  CAS  PubMed  Google Scholar 

  • Dement W, Kleitman N (1957) Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalogr Clin Neurophysiol 9:673–690

    Article  CAS  PubMed  Google Scholar 

  • Donlea JM, Thimgan MS, Suzuki Y, Gottschalk L, Shaw PJ (2011) Inducing sleep by remote control facilitates memory consolidation in Drosophila. Science 332:1571–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas CL, Vyazovskiy V, Southard T, Chiu SY, Messing A, Tononi G, Cirelli C (2007) Sleep in Kcna2 knockout mice. BMC Biol 5:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Driver RJ, Lamb AL, Wyner AJ, Raizen DM (2013) DAF-16/FOXO regulates homeostasis of essential sleep-like behavior during larval transitions in C. elegans. Curr Biol 23:501–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Equihua AC, De La Herran-Arita AK, Drucker-Colin R (2013) Orexin receptor antagonists as therapeutic agents for insomnia. Front Pharmacol 4:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finlay BL, Hersman MN, Darlington RB (1998) Patterns of vertebrate neurogenesis and the paths of vertebrate evolution. Brain Behav Evol 52:232–242

    Article  CAS  PubMed  Google Scholar 

  • Foltenyi K, Greenspan RJ, Newport JW (2007) Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat Neurosci 10:1160–1167

    Article  CAS  PubMed  Google Scholar 

  • Franken P, Thomason R, Heller HC, O’Hara BF (2007) A non-circadian role for clock-genes in sleep homeostasis: a strain comparison. BMC Neurosci 8:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graves LA, Hellman K, Veasey S, Blendy JA, Pack AI, Abel T (2003) Genetic evidence for a role of CREB in sustained cortical arousal. J Neurophysiol 90:1152–1159

    Article  CAS  PubMed  Google Scholar 

  • Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88:1183–1241

    Article  CAS  PubMed  Google Scholar 

  • Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, Benham CD, Taylor SG, Routledge C, Hemmati P et al (1999) Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci USA 96:10911–10916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallam SJ, Jin Y (1998) lin-14 regulates the timing of synaptic remodelling in Caenorhabditis elegans. Nature 395:78–82

    Article  CAS  PubMed  Google Scholar 

  • Haller J, Makara GB, Kruk MR (1998) Catecholaminergic involvement in the control of aggression: hormones, the peripheral sympathetic, and central noradrenergic systems. Neurosci Biobehav Rev 22:85–97

    Article  CAS  PubMed  Google Scholar 

  • Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami K, Goto K, Yanagisawa M et al (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:345–354

    Article  CAS  PubMed  Google Scholar 

  • Harrison NL (2007) Mechanisms of sleep induction by GABA(A) receptor agonists. J Clin Psychiatry 68(suppl 5):6–12

    CAS  PubMed  Google Scholar 

  • Hartse K (1994) Sleep in insects and nonmammalian vertebrates. Principles and practice of sleep medicine, 2nd edn. Saunders, Philadelphia, pp 95–104

    Google Scholar 

  • Hassani OK, Lee MG, Jones BE (2009) Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep–wake cycle. Proc Natl Acad Sci USA 106:2418–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi Y, Hirotsu T, Iwata R, Kage-Nakadai E, Kunitomo H, Ishihara T, Iino Y, Kubo T (2009) A trophic role for Wnt-Ror kinase signaling during developmental pruning in Caenorhabditis elegans. Nat Neurosci 12:981–987

    Article  CAS  PubMed  Google Scholar 

  • Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, Pack AI (2000) Rest in Drosophila is a sleep-like state. Neuron 25:129–138

    Article  CAS  PubMed  Google Scholar 

  • Hendricks JC, Williams JA, Panckeri K, Kirk D, Tello M, Yin JC, Sehgal A (2001) A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. Nat Neurosci 4:1108–1115

    Article  CAS  PubMed  Google Scholar 

  • Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB, Urade Y, Hayaishi O (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8:858–859

    Article  CAS  PubMed  Google Scholar 

  • Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16:1637–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouvet M, Michel F, Courjon J (1959) On a stage of rapid cerebral electrical activity in the course of physiological sleep. CR Seances Soc Biol Fil 153:1024–1028

    CAS  Google Scholar 

  • Kayser MS, Yue Z, Sehgal A (2014) A critical period of sleep for development of courtship circuitry and behavior in Drosophila. Science 344:269–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keene AC, Duboue ER, McDonald DM, Dus M, Suh GS, Waddell S, Blau J (2010) Clock and cycle limit starvation-induced sleep loss in Drosophila. Curr Biol 20:1209–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M, Uhde T, Glen WB Jr, van den Pol AN, Mulholland PJ, Shiromani PJ (2013) Optogenetic stimulation of MCH neurons increases sleep. J Neurosci 33:10257–10263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC, Weitz CJ (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294:2511–2515

    Article  CAS  PubMed  Google Scholar 

  • Kume K, Kume S, Park SK, Hirsh J, Jackson FR (2005) Dopamine is a regulator of arousal in the fruit fly. J Neurosci 25:7377–7384

    Article  CAS  PubMed  Google Scholar 

  • Kushikata T, Fang J, Chen Z, Wang Y, Krueger JM (1998) Epidermal growth factor enhances spontaneous sleep in rabbits. Am J Physiol 275:R509–R514

    CAS  PubMed  Google Scholar 

  • Langmesser S, Franken P, Feil S, Emmenegger Y, Albrecht U, Feil R (2009) cGMP-dependent protein kinase type I is implicated in the regulation of the timing and quality of sleep and wakefulness. PLoS One 4, e4238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25:6716–6720

    Article  CAS  PubMed  Google Scholar 

  • Libersat F, Pflueger HJ (2004) Monoamines and the orchestration of behavior. Bioscience 54:17–25

    Article  Google Scholar 

  • Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (1999a) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–376

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin XY, Qiu XH, de Jong PJ, Nishino S, Mignot E (1999b) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–376

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Jhou TC, Saper CB (2006a) Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26:193–202

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Sherman D, Devor M, Saper CB (2006b) A putative flip-flop switch for control of REM sleep. Nature 441:589–594

    Article  CAS  PubMed  Google Scholar 

  • Maret S, Faraguna U, Nelson AB, Cirelli C, Tononi G (2011) Sleep and waking modulate spine turnover in the adolescent mouse cortex. Nat Neurosci 14:1418–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall L, Helgadottir H, Molle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444:610–613

    Article  CAS  PubMed  Google Scholar 

  • Mieda M, Hasegawa E, Kisanuki YY, Sinton CM, Yanagisawa M, Sakurai T (2011) Differential roles of orexin receptor-1 and −2 in the regulation of non-REM and REM sleep. J Neurosci 31:6518–6526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell TE (2004) Behavioral state instability in orexin knock-out mice. J Neurosci 24:6291–6300

    Article  CAS  PubMed  Google Scholar 

  • Modirrousta M, Mainville L, Jones BE (2005) Orexin and MCH neurons express c-Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors. Eur J Neurosci 21:2807–2816

    Article  PubMed  Google Scholar 

  • Monnier M, Fallert M, Battacharya IC (1967) The waking action of histamine. Experientia 23:21–22

    Article  CAS  PubMed  Google Scholar 

  • Monsalve GC, Van Buskirk C, Frand AR (2011) LIN-42/PERIOD controls cyclical and developmental progression of C. elegans molts. Curr Biol 21:2033–2045

    Article  CAS  PubMed  Google Scholar 

  • Morrow JD, Vikraman S, Imeri L, Opp MR (2008) Effects of serotonergic activation by 5-hydroxytryptophan on sleep and body temperature of C57BL/6J and interleukin-6-deficient mice are dose and time related. Sleep 31:21–33

    PubMed  PubMed Central  Google Scholar 

  • Mukhametov LM, Supin AY, Polyakova IG (1977) Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Res 134:581–584

    Article  CAS  PubMed  Google Scholar 

  • Mukhametov LM, Lyamin OI, Polyakova IG (1985) Interhemispheric asynchrony of the sleep EEG in northern fur seals. Experientia 41:1034–1035

    Article  CAS  PubMed  Google Scholar 

  • Naylor E, Bergmann BM, Krauski K, Zee PC, Takahashi JS, Vitaterna MH, Turek FW (2000) The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci 20:8138–8143

    CAS  PubMed  Google Scholar 

  • Nicholson AN, Pascoe PA, Stone BM (1985) Histaminergic systems and sleep. Studies in man with H1 and H2 antagonists. Neuropharmacology 24:245–250

    Article  CAS  PubMed  Google Scholar 

  • Nicol SC, Andersen NA, Phillips NH, Berger RJ (2000) The echidna manifests typical characteristics of rapid eye movement sleep. Neurosci Lett 283:49–52

    Article  CAS  PubMed  Google Scholar 

  • Nicolau MC, Akaarir M, Gamundi A, Gonzalez J, Rial RV (2000) Why we sleep: the evolutionary pathway to the mammalian sleep. Prog Neurobiol 62:379–406

    Article  CAS  PubMed  Google Scholar 

  • Obal F Jr, Alfoldi P, Cady AB, Johannsen L, Sary G, Krueger JM (1988) Growth hormone-releasing factor enhances sleep in rats and rabbits. Am J Physiol 255:R310–R316

    CAS  PubMed  Google Scholar 

  • Oh Y, Jang D, Sonn JY, Choe J (2013) Histamine-HisCl1 receptor axis regulates wake-promoting signals in Drosophila melanogaster. PLoS One 8, e68269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parisky KM, Agosto J, Pulver SR, Shang Y, Kuklin E, Hodge JJ, Kang K, Liu X, Garrity PA, Rosbash M et al (2008) PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron 60:672–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R et al (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6:991–997

    Article  CAS  PubMed  Google Scholar 

  • Piper DC, Upton N, Smith MI, Hunter AJ (2000) The novel brain neuropeptide, orexin-A, modulates the sleep–wake cycle of rats. Eur J Neurosci 12:726–730

    Article  CAS  PubMed  Google Scholar 

  • Prober DA, Rihel J, Onah AA, Sung RJ, Schier AF (2006) Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 26:13400–13410

    Article  CAS  PubMed  Google Scholar 

  • Qu DQ, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, Przypek J, Kanarek R, Maratos-Flier E (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380:243–247

    Article  CAS  PubMed  Google Scholar 

  • Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You YJ, Sundaram MV, Pack AI (2008) Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451:569–572

    Article  CAS  PubMed  Google Scholar 

  • Rasch B, Buchel C, Gais S, Born J (2007) Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315:1426–1429

    Article  CAS  PubMed  Google Scholar 

  • Rattenborg NC (2006) Evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: a hypothesis. Brain Res Bull 69:20–29

    Article  PubMed  Google Scholar 

  • Rattenborg NC, Martinez-Gonzalez D (2014) Avian versus mammalian sleep: the fruits of comparing apples and oranges. Curr Sleep Med Rep 1:55–63

    Article  Google Scholar 

  • Rattenborg NC, Lima SL, Amlaner CJ (1999) Facultative control of avian unihemispheric sleep under the risk of predation. Behav Brain Res 105:163–172

    Article  CAS  PubMed  Google Scholar 

  • Rattenborg NC, Amlaner CJ, Lima SL (2000) Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci Biobehav Rev 24:817–842

    Article  CAS  PubMed  Google Scholar 

  • Rechtschaffen A, Bergmann BM (2002) Sleep deprivation in the rat: an update of the 1989 paper. Sleep 25:18–24

    PubMed  Google Scholar 

  • Rechtschaffen A, Bergmann BM, Everson CA, Kushida CA, Gilliland MA (1989) Sleep deprivation in the rat: X. Integration and discussion of the findings. Sleep 12:68–87

    CAS  PubMed  Google Scholar 

  • Renier C, Faraco JH, Bourgin P, Motley T, Bonaventure P, Rosa F, Mignot E (2007) Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenet Genomics 17:237–253

    Article  CAS  PubMed  Google Scholar 

  • Rial RV, Nicolau MC, Gamundi A, Akaarir M, Garau C, Aparicio S, Tejada S, Moranta D, Gene L, Esteban S (2007) Comments on evolution of sleep and the palliopallial connectivity in mammals and birds. Brain Res Bull 72:183–186

    Article  CAS  PubMed  Google Scholar 

  • Rial RV, Akaarir M, Gamundi A, Garau C, Aparicio S, Tejada S, Gene L, Nicolau MC, Esteban S (2008) Wake and sleep hypothalamic regulation in diurnal and nocturnal chronotypes. J Pineal Res 45:225–226

    Article  CAS  PubMed  Google Scholar 

  • Rial RV, Akaarir M, Gamundi A, Nicolau C, Garau C, Aparicio S, Tejada S, Gene L, Gonzalez J, De Vera LM et al (2010) Evolution of wakefulness, sleep and hibernation: from reptiles to mammals. Neurosci Biobehav Rev 34:1144–1160

    Article  PubMed  Google Scholar 

  • Sakai K, Crochet S, Onoe H (2001) Pontine structures and mechanisms involved in the generation of paradoxical (REM) sleep. Arch Ital Biol 139:93–107

    CAS  PubMed  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68:1023–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287:1834–1837

    Article  CAS  PubMed  Google Scholar 

  • Shaw PJ, Tononi G, Greenspan RJ, Robinson DF (2002) Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417:287–291

    Article  CAS  PubMed  Google Scholar 

  • Siegel JM, Manger PR, Nienhuis R, Fahringer HM, Pettigrew JD (1996) The echidna Tachyglossus aculeatus combines REM and non-REM aspects in a single sleep state: implications for the evolution of sleep. J Neurosci 16:3500–3506

    CAS  PubMed  Google Scholar 

  • Singh K, Ju JY, Walsh MB, DiIorio MA, Hart AC (2014) Deep conservation of genes required for both Drosophila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling. Sleep 37:1439–1451

    PubMed  PubMed Central  Google Scholar 

  • Sundvik M, Kudo H, Toivonen P, Rozov S, Chen YC, Panula P (2011) The histaminergic system regulates wakefulness and orexin/hypocretin neuron development via histamine receptor H1 in zebrafish. FASEB J 25:4338–4347

    Article  CAS  PubMed  Google Scholar 

  • Szentirmai E, Krueger JM (2006) Central administration of neuropeptide Y induces wakefulness in rats. Am J Physiol Regul Integr Comp Physiol 291:R473–R480

    Article  CAS  PubMed  Google Scholar 

  • Taheri S, Lin L, Austin D, Young T, Mignot E (2004) Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med 1, e62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi Y, Kipnis DM, Daughaday WH (1968) Growth hormone secretion during sleep. J Clin Invest 47:2079–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Lin JS, Sakai K (2008) Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience 153:860–870

    Article  CAS  PubMed  Google Scholar 

  • Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469–474

    Article  CAS  PubMed  Google Scholar 

  • Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, Kilduff TS, Terao A, Yamanaka A (2014) Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 34:6896–6909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Buskirk C, Sternberg PW (2007) Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nat Neurosci 10:1300–1307

    Article  PubMed  CAS  Google Scholar 

  • Van Cauter E, Knutson KL (2008) Sleep and the epidemic of obesity in children and adults. Eur J Endocrinol Eur Fed Endocrine Soc 159(suppl 1):S59–S66

    Article  CAS  Google Scholar 

  • Vanni-Mercier G, Sakai K, Lin JS, Jouvet M (1989) Mapping of cholinoceptive brainstem structures responsible for the generation of paradoxical sleep in the cat. Arch Ital Biol 127:133–164

    CAS  PubMed  Google Scholar 

  • Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Leger L, Boissard R, Salin P, Peyron C, Luppi PH (2003) A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci 4:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ, von Schantz M, Dijk DJ (2007) PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 17:613–618

    Article  CAS  PubMed  Google Scholar 

  • Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011) Local sleep in awake rats. Nature 472:443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JG, Albertson DG, Anness MA (1978) Connectivity changes in a class of motoneurone during the development of a nematode. Nature 271:764–766

    Article  CAS  PubMed  Google Scholar 

  • Willie JT, Chemelli RM, Sinton CM, Tokita S, Williams SC, Kisanuki YY, Marcus JN, Lee C, Elmquist JK, Kohlmeier KA et al (2003) Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron 38:715–730

    Article  CAS  PubMed  Google Scholar 

  • Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM (2001) Dopaminergic role in stimulant-induced wakefulness. J Neurosci 21:1787–1794

    CAS  PubMed  Google Scholar 

  • Wisor JP, O’Hara BF, Terao A, Selby CP, Kilduff TS, Sancar A, Edgar DM, Franken P (2002) A role for cryptochromes in sleep regulation. BMC Neurosci 3:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu MN, Ho K, Crocker A, Yue Z, Koh K, Sehgal A (2009) The effects of caffeine on sleep in Drosophila require PKA activity, but not the adenosine receptor. J Neurosci 29:11029–11037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Gan WB (2012) Sleep contributes to dendritic spine formation and elimination in the developing mouse somatosensory cortex. Dev Neurobiol 72:1391–1398

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang G, Lai CS, Cichon J, Ma L, Li W, Gan WB (2014) Sleep promotes branch-specific formation of dendritic spines after learning. Science 344:1173–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokogawa T, Marin W, Faraco J, Pezeron G, Appelbaum L, Zhang J, Rosa F, Mourrain P, Mignot E (2007) Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol 5, e277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young JZ (1981) The life of vertebrates, 3rd edn. Clarendon, Oxford

    Google Scholar 

  • Yuan Q, Joiner WJ, Sehgal A (2006) A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr Biol 16:1051–1062

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Ferretti V, Guntan I, Moro A, Steinberg EA, Ye Z, Zecharia AY, Yu X, Vyssotski AL, Brickley SG et al (2015) Neuronal ensembles sufficient for recovery sleep and the sedative actions of alpha2 adrenergic agonists. Nat Neurosci 18:553–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhdanova IV, Wang SY, Leclair OU, Danilova NP (2001) Melatonin promotes sleep-like state in zebrafish. Brain Res 903:263–268

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Hayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Hayashi, Y., Liu, CY. (2017). The Evolution and Function of Sleep. In: Shigeno, S., Murakami, Y., Nomura, T. (eds) Brain Evolution by Design. Diversity and Commonality in Animals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56469-0_15

Download citation

Publish with us

Policies and ethics