Skip to main content

Synchrotron Radiation X-Ray Analysis of Metal-Accumulating Plants

  • Chapter
  • First Online:
Book cover Metallomics

Abstract

X-ray microanalyses have been utilized to determine mechanisms of metal detoxification and homeostasis in plants and are powerful tools, especially for target plants unsuitable for genetic analyses. This chapter describes several synchrotron-based research methods to determine metal element distribution and speciation of metal-accumulating plants. The procedures are described, to show how micro-X-ray techniques are applicable to various biological materials, including those that are solid or liquid, soft or hard, or wet or dry. Combination of X-ray microanalysis with other methodologies, including TEM (transmission electron microscope), SEM (scanning electron microscope), and techniques of biochemistry and molecular biology, is described. Overall, this chapter attempts to encourage cross-disciplinary work in metallomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mobilio S, Boscherini F, Meneghini C (eds) (2014) Synchrotron radiation: basics, methods and applications. Springer, Berlin

    Google Scholar 

  2. Vijayan P, Willick IR, Lahlali R, Karunakaran C, Tanino KK (2015) Synchrotron radiation sheds fresh light on plant research: the use of powerful techniques to probe structure and composition of plants. Plant Cell Physiol 56:1252–1263. doi:10.1093/pcp/pcv080

    Article  CAS  PubMed  Google Scholar 

  3. Li YF, Chen C (2010) Chapter 6 X-ray absorption spectroscopy. In: Nuclear analytical techniques for metallomics and metalloproteomics. Royal Society of Chemistry, London

    Google Scholar 

  4. van Bokhoven JA, Lamberti C (2016) X-ray absorption and X-ray emission spectroscopy theory and applications. Wiley, Chichester

    Book  Google Scholar 

  5. Fernando DR, Mizuno T, Woodrow IE, Baker AJ, Collins RN (2010) Characterization of foliar manganese (Mn) in Mn (hyper)accumulators using X-ray absorption spectroscopy. New Phytol 188:1014–1027. doi:10.1111/j.1469-8137.2010.03431.x

    Article  CAS  PubMed  Google Scholar 

  6. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541

    Article  CAS  PubMed  Google Scholar 

  7. Tsuji K, Injuk J, van Grieken R (2004) X-ray spectrometry: recent technological advances. Wiley, Chichester

    Book  Google Scholar 

  8. Segura-Ruiz J, Martínez-Criado G, Denker C, Malindretos J, Rizzi A (2014) Phase separation in single In Ga N nanowires revealed through a hard X-ray synchrotron nanoprobe. Nano Lett 14:1300–1305

    Article  CAS  PubMed  Google Scholar 

  9. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements –, a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  10. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  Google Scholar 

  11. van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  12. Iwai T, Takahashi M, Oda K, Terada Y, Yoshida KT (2012) Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development. Plant Physiol 160:2007–2014. doi:10.1104/pp.112.206573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kowata H, Nagakawa Y, Sakurai N, Hokura A, Terada Y, Hasegawa H, Harada E (2014) Radiocesium accumulation in Egeria densa, a submerged plant – possible mechanism of cesium absorption. J Anal At Spectrom 29:868–874. doi:10.1039/C3JA50346A

    Article  CAS  Google Scholar 

  14. Harada E, Hokura A, Nakai I, Terada Y, Baba K, Yazaki K, Shiono M, Mizuno N, Mizuno T (2011) Assessment of willow (Salix sp.) as a woody heavy metal accumulator: field survey and in vivo X-ray analyses. Metallomics 3:1340–1346. doi:10.1039/C1MT00102G

    Article  CAS  PubMed  Google Scholar 

  15. Harada E, Hokura A, Takada S, Baba K, Terada Y, Nakai I, Yazaki K (2010a) Characterization of cadmium accumulation in willow as a woody metal accumulator using synchrotron radiation-based X-ray microanalyses. Plant Cell Physiol 51:848–853. doi:10.1093/pcp/pcq039

    Article  CAS  PubMed  Google Scholar 

  16. Manceau A, Simionovici A, Lanson M, Perrin J, Tucoulou R, Bohic S, Fakra SC, Marcus MA, Bedell JP, Nagy KL (2013) Thlaspi arvense binds Cu(II) as a bis-(L-histidinato) complex on root cell walls in an urban ecosystem. Metallomics 5:1674–1684. doi:10.1039/c3mt00215b

    Article  CAS  PubMed  Google Scholar 

  17. Yamaguchi N, Mori S, Baba K, Kaburagi-Yada S, Arao T, Kitajima N, Hokura A, Terada Y (2011) Cadmium distribution in the root tissues of solanaceous plants with contrasting root-to-shoot Cd translocation efficiencies. Environ Exp Bot 71:198–206. doi:10.1016/j.envexpbot.2010.12.002

    Article  CAS  Google Scholar 

  18. Lu L, Tian S, Zhang J, Yang X, Labavitch JM, Webb SM, Latimer M, Brown PH (2013) Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii. New Phytol 198:721–731. doi:10.1111/nph.12168

    Article  CAS  PubMed  Google Scholar 

  19. Choi YE, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H (2001) Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213:45–50

    Article  CAS  PubMed  Google Scholar 

  20. Isaure MP, Sarret G, Harada E, Choi YE, Marcus MA, Fakra SC, Geoffroy N, Pairis S, Susini J, Clemens S, Manceau A (2010) Calcium promotes cadmium elimination as vaterite grains by tobacco trichomes. Geochim Cosmochim Acta 74:5817–5834

    Article  CAS  Google Scholar 

  21. Sarret G, Harada E, Choi YE, Isaure MP, Geoffroy N, Fakra S, Marcus MA, Birschwilks M, Clemens S, Manceau A (2006) Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds. Plant Physiol 141:1021–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harada E, Choi YE (2008) Investigation of metal exudates from tobacco glandular trichomes under heavy metal stresses using a variable pressure scanning electron microscopy system. Plant Biotechnol 25:407–411. doi:10.5511/plantbiotechnology.25.407

    Article  CAS  Google Scholar 

  23. Harada E, Kim JA, Meyer AJ, Hell R, Clemens S, Choi YE (2010b) Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol 51:1627–1637. doi:10.1093/pcp/pcq118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Saori Takada (Tokyo University of Science) and Mr. Fumihiro Masuyama (Tokyo Denki University) for their suggestions on preparing samples of biological materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Hokura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Hokura, A., Harada, E. (2017). Synchrotron Radiation X-Ray Analysis of Metal-Accumulating Plants. In: Ogra, Y., Hirata, T. (eds) Metallomics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56463-8_6

Download citation

Publish with us

Policies and ethics