Skip to main content

New Insight into Metallomics in Cognition

  • Chapter
  • First Online:
Book cover Metallomics
  • 952 Accesses

Abstract

Brain zinc homeostasis is strictly controlled under healthy condition, indicating the importance of zinc for physiological functions in the brain. A portion of zinc exists in the synaptic vesicles and is released from glutamatergic (zincergic) neuron terminals. The zinc serves as a signal factor (as Zn2+) in the intracellular (cytosol) compartment, in addition to the extracellular compartment. The dynamic crosstalk of synaptic Zn2+ signaling to intracellular Ca2+ signaling via calcium channels is involved in synaptic plasticity such as long-term potentiation (LTP) and cognitive activity. Intracellular Zn2+ signaling is critical for cognitive activity as well as intracellular Ca2+ signaling. On the other hand, excess intracellular Zn2+ signaling, which is induced by excess glutamatergic neuron activity, is involved in neuronal death in neurological disorders as well as excess intracellular Ca2+ signaling. The hypothalamic-pituitary-adrenal (HPA) axis activity, i.e., glucocorticoid secretion, can potentiate glutamatergic neuron activity and modify synaptic Zn2+ signaling. This activity is enhanced by stress, aging, and zinc-deficient diet. Synaptic Zn2+ signaling is critical in both functional and pathological aspects and involved in β-amyloid-mediated cognitive decline. This chapter summarizes the physiological significance of intracellular Zn2+ signaling in cognition, in association with other divalent metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deshpande A, Kawai H, Metherate R, Glabe CG, Busciglio J (2009) A role for synaptic zinc in activity-dependent Aβ oligomer formation and accumulation at excitatory synapses. J Neurosci 29:4004–4015

    Article  CAS  PubMed  Google Scholar 

  2. Ozawa H (2005) Steroid Hormones, their receptors and neuroendocrine system. J Nippon Med Sch 72:316–325

    Article  CAS  PubMed  Google Scholar 

  3. Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J, Masters CL, Targum S, Bush AI, Murdoch R, Wilson J, Ritchie CW (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo controlled trial. Lancet Neurol 7:779–786

    Article  CAS  PubMed  Google Scholar 

  4. Sindreu C, Palmiter RD, Storm DR (2011) Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory. Proc Natl Acad Sci U S A 108:3366–3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gellein K, Skogholt JH, Aaseth J, Thoresen GB, Lierhagen S, Steinnes E, Syversen T, Flaten TP (2008) Trace elements in cerebrospinal fluid and blood from patients with a rare progressive central and peripheral demyelinating disease. J Neurol Sci 266:70–78

    Article  CAS  PubMed  Google Scholar 

  6. Martel G, Hevi C, Kane-Goldsmith N, Shumyatsky GP (2011) Zinc transporter 3 is involved in learned fear and extinction, but not in innate fear. Behav Brain Res 223:233–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chowanadisai W, Kelleher SL, Lönnerdal B (2005) Zinc deficiency is associated with increased brain zinc import and LIV-1 expression and decreased ZnT-1 expression in neonatal rats. J Nutr 135:1002–1007

    CAS  PubMed  Google Scholar 

  8. Faux NG, Ritchie CW, Gunn A, Rembach A, Tsatsanis A, Bedo J, Harrison J, Lannfelt L, Blennow K, Zetterberg H, Ingelsson M, Masters CL, Tanzi RE, Cummings JL, Herd CM, Bush AI (2010) PBT2 rapidly improves cognition in Alzheimer’s Disease: additional phase II analyses. J Alzheimers Dis 20:509–516

    CAS  PubMed  Google Scholar 

  9. Takeda A, Tamano H (2012) Proposed glucocorticoid-mediated zinc signaling in the hippocampus. Metallomics 4:614–618

    Article  CAS  PubMed  Google Scholar 

  10. Bancila V, Nikonenko I, Dunant Y, Bloc A (2004) Zinc inhibits glutamate release via activation of pre-synaptic KATP channels and reduces ischaemic damage in rat hippocampus. J Neurochem 90:1243–1250

    Article  CAS  PubMed  Google Scholar 

  11. Takeda A, Tamano H (2014) Cognitive decline due to excess synaptic Zn2+ signaling in the hippocampus. Front Aging Neurosci 6:26

    PubMed  PubMed Central  Google Scholar 

  12. Gahtan E, Auerbach JM, Groner Y, Segal M (1998) Reversible impairment of long-term potentiation in transgenic Cu/Zn-SOD mice. Eur J Neurosci 10:538–544

    Article  CAS  PubMed  Google Scholar 

  13. Takeda A, Takada S, Nakamura M, Suzuki M, Tamano H, Ando M, Oku N (2011) Transient increase in Zn2+ in hippocampal CA1 pyramidal neurons causes reversible memory deficit. PLoS One 6:e28615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12:222–228

    Article  CAS  PubMed  Google Scholar 

  15. Gómez-Isla T, Price JL, McKeel DW, Jr Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–4500

    PubMed  Google Scholar 

  16. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676

    Article  CAS  PubMed  Google Scholar 

  17. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476:458–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weiss JH (2011) Ca permeable AMPA channels in diseases of the nervous system. Front Mol Neurosci 4:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MV (2005) Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci U S A 102:12230–12235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nolte C, Gore A, Sekler I, Kresse W, Hershfinkel M, Hoffmann A, Kettenmann H, Moran A (2004) ZnT-1 expression in astroglial cells protects against zinc toxicity and slows the accumulation of intracellular zinc. Glia 48:145–155

    Article  PubMed  Google Scholar 

  21. Takeda A, Nakamura M, Fujii H, Uematsu C, Minamino T, Adlard PA, Bush AI, Tamano H (2014) Amyloid β-mediated Zn2+ influx into dentate granule cells transiently induces a short-term cognitive deficit. PLoS One 9:e115923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Whiteford HA, Peabody CA, Thiemann S, Kraemer HC, Csernansky JG, Berger PA (1987) The effect of age on baseline and postdexamethasone cortisol levels in major depressive disorder. Biol Psychiatry 22:1029–1032

    Article  CAS  PubMed  Google Scholar 

  23. Frederickson CJ, Giblin LJ, Krezel A, McAdoo DJ, Muelle RN, Zeng Y, Balaji RV, Masalha R, Thompson RB, Fierke CA, Sarvey JM, Valdenebro M, Prough DS, Zornow MH (2006) Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp Neurol 198:285–293

    Article  CAS  PubMed  Google Scholar 

  24. Takeda A, Suzuki M, Tamano H, Takada S, Ide K, Oku N (2012) Involvement of glucocorticoid-mediated Zn2+ signaling in attenuation of hippocampal CA1 LTP by acute stress. Neurochem Int 60:394–399

    Article  CAS  PubMed  Google Scholar 

  25. Takeda A, Nakamura M, Fujii H, Tamano H (2013) Synaptic Zn2+ homeostasis and its significance. Metallomics 5:417–423

    Article  CAS  PubMed  Google Scholar 

  26. Matheou CJ, Younan ND, Viles JH (2015) Cu2+ accentuates distinct misfolding of Aβ(1–40) and Aβ(1–42) peptides, and potentiates membrane disruption. Biochem 466:233–242

    Article  CAS  Google Scholar 

  27. Abbot NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25:5–23

    Article  Google Scholar 

  28. Cole CR, Lifshitz F (2008) Zinc nutrition and growth retardation. Pediatr Endocrinol Rev 5:889–896

    PubMed  Google Scholar 

  29. Ohinata K, Takemoto M, Kawanago M, Fushimi S, Shirakawa H, Goto T, Asakawa A, Komai M (2009) Orally administered zinc increases food intake via vagal stimulation in rats. J Nutr 139:611–616

    Article  CAS  PubMed  Google Scholar 

  30. Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238

    Article  CAS  PubMed  Google Scholar 

  31. Joëls M (2007) Role of corticosteroid hormones in the dentate gyrus. Prog Brain Res 163:355–370

    Article  PubMed  CAS  Google Scholar 

  32. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168–1170

    Article  CAS  PubMed  Google Scholar 

  33. Takeda A (2011) Zinc signaling in the hippocampus and its relation to pathogenesis of depression. Mol Neurobiol 44:167–174

    Article  CAS  Google Scholar 

  34. Black MM (1998) Zinc deficiency and child development. Am J Clin Nutr 68:464S–469S

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Takeda A, Fuke S, Tsutsumi W, Oku N (2007) Negative modulation of presynaptic activity by zinc released from Schaffer collaterals. J Neurosci Res 85:3666–3672

    Article  CAS  PubMed  Google Scholar 

  36. Markesbery WR, Ehmann WD, Alauddin M, Hossain TIM (1984) Brain trace element concentrations in aging. Neurobiol Aging 5:19–28

    Article  CAS  PubMed  Google Scholar 

  37. Joëls M (2008) Functional actions of corticosteroids in the hippocampus. Eur J Pharmacol 583:312–321

    Article  PubMed  CAS  Google Scholar 

  38. Takeda A, Minami A, Seki Y, Oku N (2003) Inhibitory function of zinc against excitation of hippocampal glutamatergic neurons. Epilepsy Res 57:169–174

    Article  CAS  PubMed  Google Scholar 

  39. Takeda A, Tamano H, Ogawa T, Takada S, Nakamura M, Fujii H, Ando M (2014) Intracellular Zn2+ signaling in the dentate gyrus is required for object recognition memory. Hippocampus 24:1404–1412

    Article  CAS  PubMed  Google Scholar 

  40. Martel G, Hevi C, Friebely O, Baybutt T, Shumyatsky GP (2010) Zinc transporter 3 is involved in learned fear and extinction, but not in innate fear. Learn Mem 17:582–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Black MM (2003) The evidence linking zinc deficiency with children’s cognitive and motor functioning. J Nutr 133:1473S–1476S

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jia Y, Jeng JM, Sensi S, Weiss JH (2002) Zn2+ currents are mediated by calcium-permeable AMPA/kainite channels in cultured murine hippocampal neurons. J Physiol Lond 543:35–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ueno S, Tsukamoto M, Hirano T, Kikuchi K, Yamada MK (2002) Nishiyama N., Nagano T., Matsuki N. and Ikegaya Y., Mossy fiber Zn2+ spillover modulates heterosynaptic N-methyl-D-aspartate receptor activity in hippocampal CA3 circuits. J Cell Biol 158:215–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cirrito JR, May PC, O’Dell MA, Taylor JW, Parsadanian M, Cramer JW, Audia JE, Nissen JS, Bales KR, Paul SM, DeMattos RB, Holtzman DM (2003) In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-β metabolism and half-life. J Neurosci 23:8844–8853

    CAS  PubMed  Google Scholar 

  45. Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, Schoepp DD, Paul SM, Mennerick S, Holtzman DM (2005) Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 48:913–922

    Article  CAS  PubMed  Google Scholar 

  46. Corniola RS, Tassabehji NM, Hare J, Sharma G, Levenson CW (2008) Zinc deficiency impairs neuronal precursor cell proliferation and induces apoptosis via p53-mediated mechanisms. Brain Res 1237:52–61

    Article  CAS  PubMed  Google Scholar 

  47. Howland JG, Wang YT (2008) Synaptic plasticity in learning and memory: stress effects in the hippocampus. Prog Brain Res 169:145–158

    Article  CAS  PubMed  Google Scholar 

  48. Bobilya DJ, Gauthier NA, Karki S, Olley BJ, Thomas WK (2008) Longitudinal changes in zinc transport kinetics, metallothionein and zinc transporter expression in a blood–brain barrier model in response to a moderately excessive zinc environment. J Nutr Biochem 19:129–137

    Article  CAS  PubMed  Google Scholar 

  49. Wong TP, Howland JG, Robillard JM, Ge Y, Yu W, Titterness AK, Brebner K, Liu L, Weinberg J, Christie BR, Phillips AG, Wang YT (2007) Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. Proc Natl Acad Sci U S A 104:11471–11476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bryan J, Osendarp S, Hughes D, Calvaresi E, Baghurst K, van Klinken JW (2004) Nutrients for cognitive development in school-aged children. Nutr Rev 62:295–306

    Article  PubMed  Google Scholar 

  51. Takeda A, Yamada K, Tamano H, Fuke S, Kawamura M, Oku N (2008) Hippocampal calcium dyshomeostasis and long-term potentiation in 2-week zinc deficiency. Neurochem Int 52:241–246

    Article  CAS  PubMed  Google Scholar 

  52. Weiss JH, Sensi SL, Koh JY (2000) Zn(2+): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 21:395–401

    Article  CAS  PubMed  Google Scholar 

  53. Takeda A, Hirate M, Tamano H, Oku N (2003) Release of glutamate and GABA in the hippocampus under zinc deficiency. J Neurosci Res 72:537–542

    Article  CAS  PubMed  Google Scholar 

  54. Bush AI (2013) The metal theory of Alzheimer’s disease. J Alzheimers Dis 33:S277–S281

    PubMed  Google Scholar 

  55. Smart TG, Xie X, Krishek BJ (1994) Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog Neurobiol 42:393–441

    Article  CAS  PubMed  Google Scholar 

  56. Vogt K, Mellor J, Tong G, Nicoll R (2000) The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26:187–196

    Article  CAS  PubMed  Google Scholar 

  57. Sekler I, Moran A, Hershfinkel M, Dori A, Margulis A, Birenzweig N, Nitzan Y, Silverman WF (2002) Distribution of the zinc transporter ZnT-1 in comparison with chelatable zinc in the mouse brain. J Comp Neurol 447:201–209

    Article  CAS  PubMed  Google Scholar 

  58. Takeda A, Tamano H, Ogawa T, Takada S, Ando M, Oku N, Watanabe M (2012) Significance of serum glucocorticoid and chelatable zinc in depression and cognition in zinc deficiency. Behav Brain Res 226:259–264

    Article  CAS  PubMed  Google Scholar 

  59. Minami A, Sakurada N, Fuke S, Kikuchi K, Nagano T, Oku N, Takeda A (2006) Inhibition of presynaptic activity by zinc released from mossy fiber terminals during tetanic stimulation. J Neurosci Res 83:167–176

    Article  CAS  PubMed  Google Scholar 

  60. Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M (2005) Brain, aging and neurodegeneration: role of zinc ion availability. Prog Neurobiol 75:367–390

    Article  CAS  PubMed  Google Scholar 

  61. Sandi C (2011) Glucocorticoids act on glutamatergic pathways to affect memory processes. Trends Neurosci 34:165–176

    Article  CAS  PubMed  Google Scholar 

  62. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344

    Article  CAS  PubMed  Google Scholar 

  63. Saito T, Takahashi K, Nakagawa N, Hosokawa T, Kurasaki M, Yamanoshita O, Yamamoto Y, Sasaki H, Nagashima K, Fujita H (2000) Biochem Biophys Res Commun 279:505–511

    Article  CAS  PubMed  Google Scholar 

  64. Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brouillette J, Caillierez R, Zommer N, Alves-Pires C, Benilova I, Blum D, De Strooper B, Buée L (2012) Neurotoxicity and memory deficits induced by soluble low-molecular-weight amyloid-β1-42 oligomers are revealed in vivo by using a novel animal model. J Neurosci 32:7852–7861

    Article  CAS  PubMed  Google Scholar 

  66. Yokel RA (2006) Blood–brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis 10:223–253

    PubMed  Google Scholar 

  67. Seed JA, Dixon RA, McCluskey SE, Young AH (2000) Basal activity of the hypothalamic-pituitary-adrenal axis and cognitive function in anorexia nervosa. Eur Arch Psychiatry Clin Neurosci 250:11–15

    Article  CAS  PubMed  Google Scholar 

  68. Wang Z, Wang Y, Li W, Mao F, Sun Y, Huang L, Li X (2014) Design, synthesis, and evaluation of multitarget-directed selenium-containing clioquinol derivatives for the treatment of Alzheimer’s disease. ACS Chem Neurosci 5:952–962

    Article  CAS  PubMed  Google Scholar 

  69. Valente T, Auladell C (2002) Developmental expression of ZnT3 in mouse brain: correlation between the vesicular zinc transporter protein and chelatable vesicular zinc (CVZ) cells. Glial and neuronal CVZ cells interact. Mol Cell Neurosci 21:189–204

    Article  CAS  PubMed  Google Scholar 

  70. Kamsler A, Segal M (2003) Paradoxical actions of hydrogen peroxide on long-term potentiation in transgenic superoxide dismutase-1 mice. J Neurosci 23:10359–10367

    CAS  PubMed  Google Scholar 

  71. Takeda A, Itoh H, Imano S, Oku N (2006) Impairment of GABAergic neurotransmitter system in the amygdala of young rats after 4-week zinc deprivation. Neurochem Int 49:746–750

    Article  CAS  PubMed  Google Scholar 

  72. Mathie A, Sutton GL, Clarke CE, Veale EL (2006) Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol Ther 111:567–583

    Article  CAS  PubMed  Google Scholar 

  73. Takeda A (2001) Zinc homeostasis and functions of zinc in the brain. BioMetals 14:343–352

    Article  CAS  PubMed  Google Scholar 

  74. Hopt A, Korte S, Fink H, Panne U, Niessner R, Jahn R, Kretzschmar H, Herms J (2003) Methods for studying synaptosomal copper release. J Neurosci Methods 128:159–172

    Article  CAS  PubMed  Google Scholar 

  75. Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci 30:1631–1636

    Article  CAS  PubMed  Google Scholar 

  76. Ceccom J, Coslédan F, Halley H, Francès B, Lassalle JM, Meunier B (2012) Copper chelator induced efficient episodic memory recovery in a non-transgenic Alzheimer’s mouse model. PLoS One 7:e43105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Palmiter RD, Cole TB, Quaife CJ, Findley SD (1996) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci U S A 93:14934–14939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14:353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang T, Wang CY, Shan ZY, Teng WP, Wang ZY (2012) Clioquinol reduces zinc accumulation in neuritic plaques and inhibits the amyloidogenic pathway in AβPP/PS1 transgenic mouse brain. J Alzheimers Dis 29:549–559

    CAS  PubMed  Google Scholar 

  80. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  CAS  PubMed  Google Scholar 

  81. Tamano H, Kan F, Kawamura M, Oku N, Takeda A (2009) Behavior in the forced swim test and neurochemical changes in the hippocampus in young rats after 2-week zinc deprivation. Neurochem Int 55:536–541

    Article  CAS  PubMed  Google Scholar 

  82. Capasso M, Jeng JM, Malavolta M, Mocchegiani E, Sensi SL (2005) Zinc dyshomeostasis: a key modulator of neuronal injury. J Alzheimers Dis 8:93–108

    CAS  PubMed  Google Scholar 

  83. Hershey CO, Hershey LA, Varnes A, Vibhakar SD, Lavin P, Strain WH (1983) Cerebrospinal fluid trace element content in dementia: clinical, radiologic, and pathologic correlations. Neurology 33:1350–1353

    Article  CAS  PubMed  Google Scholar 

  84. Sensi SL, Canzoniero LMT, Yu SP, Ying HS, Koh JY, Kerchner GA, Choi DW (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci 15:9554–9564

    Google Scholar 

  85. Choo XY, Alukaidey L, White AR, Grubman A (2013) Neuroinflammation and copper in Alzheimer’s disease. Int J Alzheimers Dis 2013:145345

    PubMed  PubMed Central  Google Scholar 

  86. Takeda A, Sawashita J, Okada S (1994) Localization in rat brain of the trace metals, zinc and manganese, after intracerebroventricular injection. Brain Res 658:252–254

    Article  CAS  PubMed  Google Scholar 

  87. Wessells KR, Brown KH (2012) Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One 7:e50568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Schlief ML, Craig AM, Gitlin JD (2005) NMDA receptor activation mediates copper homeostasis in hippocampal neurons. J Neurosci 25:239–246

    Article  CAS  PubMed  Google Scholar 

  89. Colvin RA, Fontaine CP, Laskowski M, Thomas D (2003) Zn2+ transporters and Zn2+ homeostasis in neurons. Eur J Pharmacol 479:171–185

    Article  CAS  PubMed  Google Scholar 

  90. Takeda A, Sawashita J, Okada S (1995) Biological half-lives of zinc and manganese in rat brain. Brain Res 695:53–58

    Article  CAS  PubMed  Google Scholar 

  91. Matlack KE, Tardiff DF, Narayan P, Hamamichi S, Caldwell KA, Caldwell GA, Lindquist S (2014) Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity. Proc Natl Acad Sci U S A 111:4013–4018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lang M, Fan Q, Wang L, Zheng Y, Xiao G, Wang X, Wang W, Zhong Y, Zhou B (2013) Inhibition of human high-affinity copper importer Ctr1 orthologous in the nervous system of Drosophila ameliorates Aβ42-induced Alzheimer’s disease-like symptoms. Neurobiol Aging 34:2604–2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Takeda A (2011) Insight into glutamate excitotoxicity from synaptic zinc homeostasis. Int J Alzheimers Dis 2011:491597

    Google Scholar 

  94. Starkman MN, Gebarski SS, Berent S, Schteingart DE (1992) Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry 32:756–765

    Article  CAS  PubMed  Google Scholar 

  95. Rosenblum WI (2014) Why Alzheimer trials fail: removing soluble oligomeric beta amyloid is essential, inconsistent, and difficult. Neurobiol Aging 35:969–974

    Article  CAS  PubMed  Google Scholar 

  96. Cohen-Kfir E, Lee W, Eskandari S, Nelson N (2005) Zinc inhibition of gamma-aminobutyric acid transporter 4 (GAT4) reveals a link between excitatory and inhibitory neurotransmission. Proc Natl Acad Sci U S A 102:6154–6159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Multhaup G, Schlicksupp A, Hesse L, Beher D, Ruppert T, Masters CL, Beyreuther K (1996) The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science 271:1406–1409

    Article  CAS  PubMed  Google Scholar 

  98. Aguilar-Alonso P, Martinez-Fong D, Pazos-Salazar NG, Brambila E, Gonzalez-Barrios JA, Mejorada A, Flores G, Millan-Perezpeña L, Rubio H, Leon-Chavez BA (2008) The increase in zinc levels and upregulation of zinc transporters are mediated by nitric oxide in the cerebral cortex after transient ischemia in the rat. Brain Res 1200:89–98

    Article  CAS  PubMed  Google Scholar 

  99. Arana GW, Baldessarini RJ, Ornsteen M (1985) The dexamethasone suppression test for diagnosis and prognosis in psychiatry. Arch Gen Psychiatry 42:1193–1204

    Article  CAS  PubMed  Google Scholar 

  100. Takeda A, Fujii H, Minamino T, Tamano H (2014) Intracellular Zn2+ signaling in cognition. J Neurosci Res 92:819–824

    Article  CAS  PubMed  Google Scholar 

  101. Nowak G, Szewczyk B, Pilc A (2005) Zinc and depression. An update. Pharmacol Rep 57:713–718

    CAS  PubMed  Google Scholar 

  102. Takeda A, Minami A, Takefuta S, Tochigi M, Oku N (2001) Zinc homeostasis in the brain of adult rats fed zinc-deficient diet. J Neurosci Res 63:447–452

    Article  CAS  PubMed  Google Scholar 

  103. Takeda A, Tamano H, Tochigi M, Oku N (2005) Zinc homeostasis in the hippocampus of zinc-deficient young adult rats. Neurochem Int 46:221–225

    Article  CAS  PubMed  Google Scholar 

  104. Prasad AS (2014) Impact of the discovery of human zinc deficiency on health. J Trace Elem Med Biol 28:357–363

    Article  CAS  PubMed  Google Scholar 

  105. Takeda A, Tamano H (2015) Regulation of extracellular Zn2+ homeostasis in the hippocampus as a therapeutic target for Alzheimer’s disease. Expert Opin Ther Targets 19:1–8

    Article  CAS  Google Scholar 

  106. Puzzo D, Privitera L, Fa’ M, Staniszewski A, Hashimoto G, Aziz F, Sakurai M, Ribe EM, Troy CM, Mercken M, Jung SS, Palmeri A, Arancio O (2011) Endogenous amyloid-β is necessary for hippocampal synaptic plasticity and memory. Ann Neurol 69:819–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Takeda A, Fuke S, Ando M, Oku N (2009) Positive modulation of long-term potentiation at hippocampal CA1 synapses by low micromolar concentrations of zinc. Neuroscience 158:585–591

    Article  CAS  PubMed  Google Scholar 

  108. Suzuki M, Fujise Y, Tsuchiya Y, Tamano H, Takeda A (2015) Excess influx of Zn2+ into dentate granule cells affects object recognition memory via attenuated LTP. Neurochem Int 87:60–65

    Article  CAS  PubMed  Google Scholar 

  109. Venero C, Borrell J (1999) Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: a microdialysis study in freely moving rats. Eur J Neurosci 11:2465–2473

    Article  CAS  PubMed  Google Scholar 

  110. Karst H, Berger S, Turiault M, Tronche F, Schütz G, Joëls M (2005) Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc Natl Acad Sci U S A 102:19204–19207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Takeda A, Hirate M, Tamano H, Nishibaba D, Oku N (2003) Susceptibility to kainate-induced seizures under dietary zinc deficiency. J Neurochem 85:1575–1580

    Article  CAS  PubMed  Google Scholar 

  112. Izumi Y, Auberson YP, Zorumski CF (2006) Zinc modulates bidirectional hippocampal plasticity by effects on NMDA receptors. J Neurosci 26:7181–7188

    Article  CAS  PubMed  Google Scholar 

  113. Joëls M, Karst H, DeRijk R, de Kloet ER (2008) The coming out of the brain mineralocorticoid receptor. Trends Neurosci 31:1–7

    Article  PubMed  CAS  Google Scholar 

  114. Pan E, Zhang XA, Huang Z, Krezel A, Zhao M, Tinberg CE, Lippard SJ, McNamara JO (2011) Vesicular zinc promotes presynaptic and inhibits postsynaptic long-term potentiation of mossy fiber-CA3 synapse. Neuron 71:1116–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cole TB, Martyanova A, Palmiter RD (2001) Removing zinc from synaptic vesicles dose not impair spatial learning, memory, or sensorimoter functions in the mouse. Brain Res 891:253–265

    Article  CAS  PubMed  Google Scholar 

  116. Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK, Weiss JH (2003) Modulation of mitochondrial function by endogenous Zn2+ pools. Proc Natl Acad Sci U S A 100:6157–6162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Takamura Y, Ono K, Matsumoto J, Yamada M, Nishijo H (2014) Effects of the neurotrophic agent T-817MA on oligomeric amyloid-β-induced deficits in long-term potentiation in the hippocampal CA1 subfield. Neurobiol Aging 35:532–536

    Article  CAS  PubMed  Google Scholar 

  118. Johansson PA, Dziegielewska KM, Liddelow SA, Saunders NR (2008) The blood-CSF barrier explained: when development is not immaturity. Bioessays 30:237–248

    Article  CAS  PubMed  Google Scholar 

  119. Takeda A, Tamano H (2009) Insight into zinc signaling from dietary zinc deficiency. Brain Res Rev 62:33–34

    Article  CAS  PubMed  Google Scholar 

  120. Nestor PJ, Scheltens P, Hodges JR (2004) Advances in the early detection of Alzheimer’s disease. Nat Med 10(Suppl):S34–S41

    Article  PubMed  Google Scholar 

  121. Takeda A, Tamano H, Kan F, Itoh H, Oku N (2007) Anxiety-like behavior of young rats after 2-week zinc deprivation. Behav Brain Res 177:1–6

    Article  CAS  PubMed  Google Scholar 

  122. Ceccom J, Bouhsira E, Halley H, Daumas S, Lassalle JM (2013) Differential needs of zinc in the CA3 area of dorsal hippocampus for the consolidation of contextual fear and spatial memories. Learn Mem 20:348–351

    Article  CAS  PubMed  Google Scholar 

  123. Ceccom J, Halley H, Daumas S, Lassalle JM (2014) A specific role for hippocampal mossy fiber’s zinc in rapid storage of emotional memories. Learn Mem 21:287–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089

    Article  CAS  PubMed  Google Scholar 

  125. Crews L, Masliah E (2010) Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Genet 19:R12–R20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Magneson GR, Puvathingal JM, Ray WJ Jr (1987) The concentrations of free Mg2+ and free Zn2+ in equine blood plasma. J Biol Chem 262:11140–11148

    CAS  PubMed  Google Scholar 

  127. Maret W, Sandstead HH (2008) Possible roles of zinc nutriture in the fetal origins of disease. Exp Gerontol 43:378–381

    Article  CAS  PubMed  Google Scholar 

  128. Qian J, Noebels JL (2005) Visualization of transmitter release with zinc fluorescence detection at the mouse hippocampal mossy fibre synapse. J Physiol 566:747–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  130. Vallee BL, Falchuk KH (1993) The biological basis of zinc physiology. Physiol Rev 73:79–118

    CAS  PubMed  Google Scholar 

  131. Dufner-Beattie J, Kuo YM, Gitschier J, Andrews GK (2004) The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J Biol Chem 279:49082–49090

    Article  CAS  PubMed  Google Scholar 

  132. Emmetsberger J, Mirrione MM, Zhou C, Fernandez-Monreal M, Siddiq MM, Ji K, Tsirka SE (2010) Tissue plasminogen activator alters intracellular sequestration of zinc through interaction with the transporter ZIP4. J Neurosci 30:6538–6547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci U S A 96:1716–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fukada T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3:662–674

    Article  CAS  PubMed  Google Scholar 

  135. Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D (2009) Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62:788–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liu S, Lau L, Wei J, Zhu D, Zou S, Sun HS, Fu Y, Liu F, Lu Y (2004) Expression of Ca(2+)-permeable AMPA receptor channels primes cell death in transient forebrain ischemia. Neuron 43:43–55

    Article  PubMed  Google Scholar 

  137. Maes M, D’Haese PC, Scharpé S, D’Hondt P, Cosyns P, De Broe ME (1994) Hypozincemia in depression. J Affect Disord 31:135–140

    Article  CAS  PubMed  Google Scholar 

  138. Stork CJ, Li YV (2010) Zinc release from thapsigargin/IP3-sensitive stores in cultured cortical neurons. J Mol Signal 5:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Lee JY, Kim JS, Byun HR, Palmiter RD, Koh JY (2011) Dependence of the histofluorescently reactive zinc pool on zinc transporter-3 in the normal brain. Brain Res 1418:12–22

    Article  CAS  PubMed  Google Scholar 

  140. Bhatnagar S, Taneja S (2001) Zinc and cognitive development. Br J Nutr 85:S139–S145

    Article  CAS  PubMed  Google Scholar 

  141. Colvin RA, Laskowski M, Fontaine CP (2006) Zinquin identifies subcellular compartmentalization of zinc in cortical neurons. Relation to the trafficking of zinc and the mitochondrial compartment. Brain Res 1085:1–10

    Article  CAS  PubMed  Google Scholar 

  142. Colvin RA, Bush AI, Volitakis I, Fontaine CP, Thomas D, Kikuchi K, Holmes WR (2008) Insights into Zn2+ homeostasis in neurons from experimental and modeling studies. Am J Physiol Cell Physiol 294:C726–C742

    Article  CAS  PubMed  Google Scholar 

  143. Suh SW, Won SJ, Hamby AM, Fan Y, Sheline CT, Tamano H, Takeda A, Liu J (2009) Decreased brain zinc availability reduces hippocampal neurogenesis in mice and rats. J Cereb Blood Flow Metab 29:1579–1588

    Article  CAS  PubMed  Google Scholar 

  144. Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–419

    Article  CAS  PubMed  Google Scholar 

  145. Takeda A, Akiyama T, Sawashita J, Okada S (1994) Brain uptake of trace metals, zinc and manganese, in rats. Brain Res 640:341–344

    Article  CAS  PubMed  Google Scholar 

  146. Holsboer F (1983) The dexamethasone suppression test in depressed patients: clinical and biochemical aspects. J Steroid Biochem 19:251–257

    Article  CAS  PubMed  Google Scholar 

  147. Salgueiro MJ, Zubillaga MB, Lysionek AE, Caro RA, Weill R, Boccio JR (2002) The role of zinc in the growth and development of children. Nutrition 18:510–519

    Article  CAS  PubMed  Google Scholar 

  148. Danscher G, Stoltenberg M (2005) Zinc-specific autometallographic in vivo selenium methods: tracing of zinc-enriched (ZEN) terminals, ZEN pathways, and pools of zinc ions in a multitude of other ZEN cells. J Histochem Cytochem 53:141–153

    Article  CAS  PubMed  Google Scholar 

  149. De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao WQ, Ferreira ST, Klein WL (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci U S A 106:1971–1976

    Article  PubMed  PubMed Central  Google Scholar 

  150. Jou MY, Hall AG, Philipps AF, Kelleher SL, Lönnerdal BJ (2009) Tissue-specific alterations in zinc transporter expression in intestine and liver reflect a threshold for homeostatic compensation during dietary zinc deficiency in weanling rats. Nutr 139:835–841

    Article  CAS  Google Scholar 

  151. Valente T, Auladell C, Pérez-Clausell J (2002) Postnatal development of zinc-rich terminal fields in the brain of the rat. Exp Neurol 174:215–229

    Article  CAS  PubMed  Google Scholar 

  152. Musazzi L, Milanese M, Farisello P, Zappettini S, Tardito D, Barbiero VS, Bonifacino T, Mallei A, Baldelli P, Racagni G, Raiteri M, Benfenati F, Bonanno G, Popoli M (2010) Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS One 5:e8566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Takeda A, Tamano H (2010) Zinc signaling through glucocorticoid and glutamate signaling in stressful circumstances. J Neurosci Res 88:3002–3010

    Article  CAS  PubMed  Google Scholar 

  154. Nakashima AS, Dyck RH (2009) Zinc and cortical plasticity. Brain Res Rev 59:347–373

    Article  CAS  PubMed  Google Scholar 

  155. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  CAS  PubMed  Google Scholar 

  156. Frederickson CJ, Danscher G (1990) Zinc-containing neurons in hippocampus and related CNS structures. Prog Brain Res 83:71–84

    Article  CAS  PubMed  Google Scholar 

  157. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  CAS  PubMed  Google Scholar 

  158. Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    Article  CAS  PubMed  Google Scholar 

  159. Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384

    Article  CAS  PubMed  Google Scholar 

  160. Mirescu C, Gould E (2006) Stress and adult neurogenesis. Hippocampus 16:233–238

    Article  CAS  PubMed  Google Scholar 

  161. Takeda A, Fuke S, Minami A, Oku N (2007) Role of zinc influx via AMPA/kainate receptor activation in metabotropic glutamate receptor-mediated calcium release. J Neurosci Res 85:1310–1317

    Article  CAS  PubMed  Google Scholar 

  162. Takeda A, Suzuki M, Tempaku M, Ohashi K, Tamano H (2015) Influx of extracellular Zn2+ into the hippocampal CA1 neurons is required for cognitive performance via long-term potentiation. Neuroscience 304:209–216

    Article  CAS  PubMed  Google Scholar 

  163. Tamano H, Minamino T, Fujii H, Takada S, Nakamura M, Ando M, Takeda A (2015) Blockade of intracellular Zn2+ signaling in the dentate gyrus erases recognition memory via impairment of maintained LTP. Hippocampus 25:952–962

    Article  CAS  PubMed  Google Scholar 

  164. Michalke B, Nischwitz V (2010) Review on metal speciation analysis in cerebrospinal fluid-current methods and results: a review. Anal Chim Acta 682:23–36

    Article  CAS  PubMed  Google Scholar 

  165. Carroll BJ, Feinberg M, Greden JF, Tarika J, Albala AA, Haskett RF, James NM, Kronfol Z, Lohr N, Steiner M, de Vigne JP, Young E (1981) A specific laboratory test for the diagnosis of melancholia: standardization, validation and clinical utility. Arch Gen Psychiatry 38:15–22

    Article  CAS  PubMed  Google Scholar 

  166. Belloni-Olivi L, Marshall C, Laal B, Andrews GK, Bressler J (2009) Localization of zip1 and zip4 mRNA in the adult rat brain. J Neurosci Res 87:3221–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Rev 34:137–148

    Article  CAS  PubMed  Google Scholar 

  168. Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487–498

    Article  CAS  PubMed  Google Scholar 

  169. Greenough MA, Camakaris J, Bush AI (2013) Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 62:540–555

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Takeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Takeda, A., Tamano, H. (2017). New Insight into Metallomics in Cognition. In: Ogra, Y., Hirata, T. (eds) Metallomics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56463-8_15

Download citation

Publish with us

Policies and ethics