Skip to main content

Link Between Metal Homeostasis and Neurodegenerative Diseases: Crosstalk of Metals and Amyloidogenic Proteins at the Synapse

  • Chapter
  • First Online:
Metallomics

Abstract

Increasing evidence suggests that disruption of metal homeostasis contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer’s disease, Lewy body diseases, vascular dementia, and prion diseases. Conformational changes of disease-related proteins such as ß-amyloid protein, α-synuclein, and prion proteins are well-established contributors to the synaptotoxicity, neurotoxicity, and pathogenesis of these diseases. Recent studies have revealed that these proteins are metalloproteins that coexist in synapses and play significant roles in the maintenance of metal homeostasis in synapses. Trace elements such as zinc (Zn), iron (Fe), copper (Cu), and aluminum (Al) bind to these proteins, thereby influencing their conformations and functions. Additionally, these metals have common binding sites; binding of metals to proteins is nonspecific. Therefore, metal-metal interactions at synapses contribute to the neurodegenerative processes. We present a current review of the role of trace elements in the functions and toxicity of disease-related proteins, as well as in the pathogenesis of neurodegenerative diseases. Possible therapeutic approaches related to metal homeostasis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawahara M, Kato-Negishi M (2011) Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimer Dis 2011:276393

    Google Scholar 

  2. Kawahara M, Mizuno D, Koyama H, Konoha K, Ohkawara S, Sadakane Y (2013) Disruption of zinc homeostasis and the pathogenesis of senile dementia. Metallomics 6:209–219

    Article  Google Scholar 

  3. Carrell RW, Lomas DA (1997) Conformational disease. Lancet 350:134–138

    Article  CAS  PubMed  Google Scholar 

  4. Kawahara M (2010) Role of calcium dyshomeostasis via amyloid channels in the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2779–2789

    Article  CAS  PubMed  Google Scholar 

  5. Becker JSS, Matusch A, Palm C, Salber D, Morton K, Becker S (2010) Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics. Metallomics 2:104–111

    Article  PubMed  Google Scholar 

  6. Youdim MB (2008) Brain iron deficiency and excess; cognitive impairment and neurodegeneration with involvement of striatum and hippocampus. Neurotox Res 14:45–56

    Article  CAS  PubMed  Google Scholar 

  7. Crichton RR, Wilmet S, Legssyer R, Ward RJ (2002) Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem 91:9–18

    Article  CAS  PubMed  Google Scholar 

  8. Conrad ME, Umbreit JN (2000) Iron absorption and transport-an update. Am J Hematol 64:287–298

    Article  CAS  PubMed  Google Scholar 

  9. Davies P, Moualla D, Brown DR (2011) Alpha-synuclein is a cellular ferrireductase. PLoS One 6, e15814. doi:10.1371/journal.pone.0015814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Singh A, Haldar S, Horback K, Tom C, Zhou L, Meyerson H, Singh N (2013) Prion protein regulates iron transport by functioning as a ferrireductase. J Alzheimers Dis 35:541–552

    CAS  PubMed  Google Scholar 

  11. Wong BX, Tsatsanis A, Lim LQ, Adlard PA, Bush AI, Duce JA (2014) β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS One 9:e114174. doi: 10.1371/journal.pone.0114174. eCollection 2014

  12. Muckenthaler MU, Galy B, Hentze MW (2008) Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 28:197–213

    Article  CAS  PubMed  Google Scholar 

  13. Rogers JT, Bush AI, Cho HH, Smith DH, Thomson AM, Friedlich AL, Lahiri DK, Leedman PJ, Huang X, Cahill CM (2008) Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: riboregulation against neural oxidative damage in Alzheimer’s disease. Biochem Soc Trans 36:1282–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T (2011) Zinc homeostasis and signaling in health and diseases: zinc signaling. J Biol Inorg Chem 16:1123–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sandstead HH (2012) Subclinical zinc deficiency impairs human brain function. J Trace Elem Med Biol 26:70–73

    Article  CAS  PubMed  Google Scholar 

  16. Takeda A, Tamano H (2009) Insight into zinc signaling from dietary zinc deficiency. Brain Res Rev 62:33–44

    Article  CAS  PubMed  Google Scholar 

  17. Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130:1471S–1483S

    CAS  PubMed  Google Scholar 

  18. Vogt K, Mellor J, Tong G, Nicoll R (2000) The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26:187–196

    Article  CAS  PubMed  Google Scholar 

  19. Takeda A, Fujii H, Minamino T, Tamano H (2014) Intracellular Zn(2+) signaling in cognition. J Neurosci Res 92:819–824

    Google Scholar 

  20. Ueno S, Tsukamoto M, Hirano T, Kikuchi K, Yamada MK, Nishiyama N, Nagano T, Matsuki N, Ikegaya Y (2002) Mossy fiber Zn2+ spillover modulates heterosynaptic N-methyl-D-aspartate receptor activity in hippocampal CA3 circuits. J Cell Biol 158:215–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pan E, Zhang XA, Huang Z, Krezel A, Zhao M, Tinberg CE, Lippard SJ, McNamara JO (2011) Vesicular zinc promotes presynaptic and inhibits postsynaptic long-term potentiation of mossy fiber-CA3 synapse. Neuron 71:1116–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bolognin S, Cozzi B, Zambenedetti P, Zatta P (2014) Metallothioneins and the central nervous system: from a deregulation in neurodegenerative diseases to the development of new therapeutic approaches. J Alzheimers Dis 41:29–42

    CAS  PubMed  Google Scholar 

  23. Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M (1991) The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron 7:337–347

    Article  CAS  PubMed  Google Scholar 

  24. Uchida Y (1994) Growth-inhibitory factor, metallothionein-like protein, and neurodegenerative diseases. Biol Signals 3:211–215

    Article  CAS  PubMed  Google Scholar 

  25. Fukada T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3:662–674

    Article  CAS  PubMed  Google Scholar 

  26. Tsuda M, Imaizumi K, Katayama T, Kitagawa K, Wanaka A, Tohyama M, Takagi T (1997) Expression of zinc transporter gene, ZnT-1, is induced after transient forebrain ischemia in the gerbil. J Neurosci 17:6678–6684

    CAS  PubMed  Google Scholar 

  27. Sindreu C, Palmiter RD, Storm DR (2011) Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory. Proc Natl Acad Sci U S A 108:3366–3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bin BH, Fukada T, Hosaka T, Yamasaki S, Ohashi W, Hojyo S, Miyai T, Nishida K, Yokoyama S, Hirano T (2011) Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome. J Biol Chem 286:40255–40265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kodama H, Fujisawa C, Bhadhprasit W (2010) Pathology, clinical features and treatments of congenital copper metabolic disorders–focus on neurologic aspects. Brain Dev 33:243–251

    Article  PubMed  Google Scholar 

  30. D’Ambrosi N, Rossi L (2015) Copper at synapse: release, binding and modulation of neurotransmission. Neurochem Int 90:36–45

    Article  PubMed  CAS  Google Scholar 

  31. Dodani SC, Firl A, Chan J, Nam CI, Aron AT, Onak CS, Ramos-Torres KM, Paek J, Webster CM, Feller MB, Chang CJ (2014) Copper is an endogenous modulator of neural circuit spontaneous activity. Proc Natl Acad Sci U S A 111:16280–16285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Exley C (2005) The aluminium-amyloid cascade hypothesis and Alzheimer’s disease. Subcell Biochem 38:225–234

    Article  CAS  PubMed  Google Scholar 

  33. Yase Y, Yoshida S, Kihira T, Wakayama I, Komoto J (2001) Kii ALS dementia. Neuropathology 21:105–109

    Article  CAS  PubMed  Google Scholar 

  34. Alfrey AC, LeGendre GR, Kaehny WD (1976) The dialysis encephalopathy syndrome: possible aluminium intoxication. New Engl J Med 294:184–188

    Article  CAS  PubMed  Google Scholar 

  35. Petrik MS, Wong MC, Tabata RC, Garry RF, Shaw CA (2007) Aluminum adjuvant linked to Gulf War illness induces motor neuron death in mice. Neruomol Med 9:83–92

    Article  CAS  Google Scholar 

  36. Oteiza PI (1994) A mechanism for the stimulatory effect of aluminum on iron-induced lipid peroxidation. Arch Biochem Biophys 308:374–379

    Article  PubMed  Google Scholar 

  37. Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487–498

    Article  CAS  PubMed  Google Scholar 

  38. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  CAS  PubMed  Google Scholar 

  39. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  CAS  PubMed  Google Scholar 

  40. Wirths O, Multhaup G, Bayer TA (2004) A modified ß-amyloid hypothesis: intraneuronal accumulation of the beta-amyloid peptide–the first step of a fatal cascade. J Neurochem 91:513–520

    Article  CAS  PubMed  Google Scholar 

  41. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706

    Article  CAS  PubMed  Google Scholar 

  42. Selkoe DJ, Wolfe MS (2007) Presenilin: running with scissors in the membrane. Cell 131:215–221

    Article  CAS  PubMed  Google Scholar 

  43. Yankner BA, Duffy LK, Kirschner DA (1990) Neurotropic and neurotoxic effects of amyloid ß protein: reversal by tachykinin neuropeptides. Nature 250:279–282

    CAS  Google Scholar 

  44. Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW (1993) Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 13:1676–1687

    CAS  PubMed  Google Scholar 

  45. Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058

    Article  CAS  PubMed  Google Scholar 

  46. Fukuyama R, Mizuno T, Mori S, Nakajima K, Fushiki S, Yanagisawa K (2000) Age-dependent change in the levels of Aβ40 and Aβ42 in cerebrospinal fluid from control subjects, and a decrease in the ratio of Aβ42 to Aβ40 level in cerebrospinal fluid from Alzheimer’s disease patients. Eur Neurol 43:155–160

    Article  CAS  PubMed  Google Scholar 

  47. Kawahara M, Negishi-Kato M, Sadakane Y (2009) Calcium dyshomeostasis and neurotoxicity of Alzheimer’s beta-amyloid protein. Expert Rev Neurother 9:681–693

    Article  CAS  PubMed  Google Scholar 

  48. Dyrks T, Dyrks E, Masters CL, Beyreuther K (1993) Amyloidogenicity of rodent and human ß A4 sequences. FEBS Lett 324:231–236

    Article  CAS  PubMed  Google Scholar 

  49. Flaten TP (2001) Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res Bull 55:187–196

    Article  CAS  PubMed  Google Scholar 

  50. Exley C, Price NC, Kelly SM, Birchall JD (1993) An interaction of β-amyloid with aluminium in vitro. FEBS Lett 324:293–295

    Article  CAS  PubMed  Google Scholar 

  51. Mantyh PW, Ghilardi JR, Rogers S, DeMaster E, Allen CJ, Stimson ER, Maggio JE (1993) Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of beta-amyloid peptide. J Neurochem 61:1171–1174

    Article  CAS  PubMed  Google Scholar 

  52. Kawahara M, Muramoto K, Kobayashi K, Mori H, Kuroda Y (1994) Aluminum promotes the aggregation of Alzheimer’s β-amyloid protein in vitro. Biochem Biophys Res Commun 198:531–535

    Article  CAS  PubMed  Google Scholar 

  53. Kawahara M, Kato M, Kuroda Y (2001) Effects of aluminum on the neurotoxicity of primary cultured neurons and on the aggregation of ß-amyloid protein. Brain Res Bull 55:211–217

    Article  CAS  PubMed  Google Scholar 

  54. Bush AI, Pettingell WH, Multhaup G, d Paradis M, Vonsattel JP, Gusella JF, Beyreuther K, Masters CL, Tanzi RE (1994) Rapid induction of Alzheimer Aß amyloid formation by zinc. Science 265:1464–1467

    Google Scholar 

  55. Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NM, Romano DM, Hartshorn MA, Tanzi RE, Bush AI (1998) Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 273:12817–12826

    Article  CAS  PubMed  Google Scholar 

  56. Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, Teplow DB, Selkoe DJ (1999) Protofibrillar intermediates of amyloid ß-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19:8876–8884

    CAS  PubMed  Google Scholar 

  57. Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) The oligomerization of amyloid ß-protein begins intracellularly in cells derived from human brain. Biochemistry 39:10831–10839

    Article  CAS  PubMed  Google Scholar 

  58. Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192:106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen WT, Liao YH, Yu HM, Cheng IH, Chen YR (2011) Distinct effects of Zn2+, Cu2+, Fe3+, and Al3+ on amyloid-beta stability, oligomerization, and aggregation: amyloid-beta destabilization promotes annular protofibril formation. J Biol Chem 286:9646–9656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sharma AK, Pavlova ST, Kim J, Kim J, Mirica LM (2013) The effect of Cu(2+) and Zn(2+) on the Aβ42 peptide aggregation and cellular toxicity. Metallomics 5:1529–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Drago D, Cavaliere A, Mascetra N, Ciavardelli D, di Ilio C, Zatta P, Sensi SL (2008) Aluminum modulates effects of beta amyloid(1-42) on neuronal calcium homeostasis and mitochondria functioning and is altered in a triple transgenic mouse model of Alzheimer’s disease. Rejuvenation Res 11:861–871

    Article  CAS  PubMed  Google Scholar 

  62. Bolognin S, Zatta P, Lorenzetto E, Valenti MT, Buffelli M (2013) β-Amyloid-aluminum complex alters cytoskeletal stability and increases ROS production in cortical neurons. Neurochem Int 62:566–574

    Article  CAS  PubMed  Google Scholar 

  63. Everett J, Céspedes E, Shelford LR, Exley C, Collingwood JF, Dobson J, van der Laan G, Jenkins CA, Arenholz E, Telling ND (2014) Ferrous iron formation following the co-aggregation of ferric iron and the Alzheimer’s disease peptide β-amyloid (1-42). J R Soc Interface 11:20140165. doi:10.1098/rsif.2014.0165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Arispe N, Diaz JC, Simakova O (2007) Abeta ion channels. Prospects for treating Alzheimer’s disease with Abeta channel blockers. Biochim Biophys Acta 1768:1952–1965

    Article  CAS  PubMed  Google Scholar 

  65. Kawahara M, Ohtsuka I, Yokoyama S, Kato-Negishi M, Sadakane Y (2011) Membrane incorporation, channel formation, and disruption of calcium homeostasis by Alzheimer’s ß-amyloid protein. Int J Alzheimer Dis:304583

    Google Scholar 

  66. Lal R, Lin H, Quist AP (2007) Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm. Biochim Biophys Acta 1768:1966–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arispe N, Rojas E, Pollard HB (1993) Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A 90:567–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arispe N, Pollard HB, Rojas E (1996) Zn2+ interaction with Alzheimer amyloid beta protein calcium channels. Proc Natl Acad Sci U S A 93:1710–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kawahara M, Arispe N, Kuroda Y, Rojas E (1997) Alzheimer’s disease amyloid ß-protein forms Zn2+-sensitive, cation-selective channels across excised membrane patches from hypothalamic neurons. Biophys J 73:67–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kawahara M, Arispe N, Kuroda Y, Rojas E (2000) Alzheimer’s ß-amyloid, human islet amylin and prion protein fragment evoke intracellular free-calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell-line. J Biol Chem 275:14077–14083

    Article  CAS  PubMed  Google Scholar 

  71. Ayton S, Lei P, Bush AI (2013) Metallostasis in Alzheimer’s disease. Free Radic Biol Med 62:76–89

    Article  CAS  PubMed  Google Scholar 

  72. Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H, Leiter L, McPhee J, Sarang SS, Utsuki T, Greig NH, Lahiri DK, Tanzi RE, Bush AI, Giordano T, Gullans SR (2002) An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 277:45518–45528

    Article  CAS  PubMed  Google Scholar 

  73. Namekata K, Imagawa M, Terashi A, Ohta S, Oyama F, Ihara Y (1997) Association of transferrin C2 allele with late-onset Alzheimer’s disease. Hum Genet 101:126–129

    Article  CAS  PubMed  Google Scholar 

  74. Imagawa M, Naruse S, Tsuji S, Fujioka A, Yamaguchi H (1992) Coenzyme Q10, iron, and vitamine B6 in genetically-confirmed Alzheimer’s disease. Lancet 340:671

    Article  CAS  PubMed  Google Scholar 

  75. White AR, Multhaup G, Maher F, Bellingham S, Camakaris J, Zheng H, Bush AI, Beyreuther K, Masters CL, Cappai R (1999) The Alzheimer’s disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures. J Neurosci 19:9170–9179

    CAS  PubMed  Google Scholar 

  76. Baumkötter F, Schmidt N, Vargas C, Schilling S, Weber R, Wagner K, Fiedler S, Klug W, Radzimanowski J, Nickolaus S, Keller S, Eggert S, Wild K, Kins S (2014) Amyloid precursor protein dimerization and synaptogenic function depend on copper binding to the growth factor-like domain. J Neurosci 34:11159–11172

    Article  PubMed  CAS  Google Scholar 

  77. White AR, Reyes R, Mercer JF, Camakaris J, Zheng H, Bush AI, Multhaup G, Beyreuther K, Masters CL, Cappai R (1999) Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res 842:439–444

    Article  CAS  PubMed  Google Scholar 

  78. Ciccotosto GD, James SA, Altissimo M, Paterson D, Vogt S, Lai B, de Jonge MD, Howard DL, Bush AI, Cappai R (2014) Quantitation and localization of intracellular redox active metals by X-ray fluorescence microscopy in cortical neurons derived from APP and APLP2 knockout tissue. Metallomics 6:1894–1904

    Article  CAS  PubMed  Google Scholar 

  79. Raha AA, Vaishnav RA, Friedland RP, Bomford A, Raha-Chowdhury R (2013) The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer’s disease. Acta Neuropathol Commun 1:55. doi:10.1186/2051-5960-1-55

  80. Oshiro S, Kawahara M, Shirao M, Muramoto K, Kobayashi K, Ishige R, Nozawa K, Hori M, Yung C, Kitajima S, Kuroda Y (1998) Aluminum taken up by transferrin independent iron uptake affects the iron metabolism in rat cortical cells. J Biochem 123:42–46

    Article  CAS  PubMed  Google Scholar 

  81. Yamanaka K, Minato N, Iwai K (1999) Stabilization of iron regulatory protein 2, IRP2, by aluminum. FEBS Lett 462:216–220

    Article  CAS  PubMed  Google Scholar 

  82. Li XB, Zhang ZY, Yin LH, Schluesener HJ (2012) The profile of β-amyloid precursor protein expression of rats induced by aluminum. Environ Toxicol Pharmacol 33:135–140

    Article  PubMed  CAS  Google Scholar 

  83. Liang RF, Li WQ, Wang H, Wang JX, Niu Q (2013) Impact of sub-chronic aluminium-maltolate exposure on catabolism of amyloid precursor protein in rats. Biomed Environ Sci 26:445–452

    CAS  PubMed  Google Scholar 

  84. Walton JR, Wang MX (2009) APP expression, distribution and accumulation are altered by aluminum in a rodent model for Alzheimer’s disease. J Inorg Biochem 103:1548–1554

    Article  CAS  PubMed  Google Scholar 

  85. Wang L, Hu J, Zhao Y, Lu X, Zhang Q, Niu Q (2014) Effects of aluminium on β-amyloid (1-42) and secretases (APP-cleaving enzymes) in rat brain. Neurochem Res 39:1338–1345

    Article  CAS  PubMed  Google Scholar 

  86. Oshiro S, Kawahara M, Kuroda Y, Zhang C, Cai Y, Kitajima S, Shirao M (2000) Glial cells contribute more to iron and aluminum accumulation but are more resistant to oxidative stress than neuronal cells. Biochim Biophys Acta 1502:405–414

    Article  CAS  PubMed  Google Scholar 

  87. Green KN, LaFerla FM (2008) Linking calcium to Aß and Alzheimer’s disease. Neuron 59:190–42008

    Article  CAS  PubMed  Google Scholar 

  88. Mattson MP (2010) ER calcium and Alzheimer’s disease: in a state of flux. Sci Signal 3:pe10. doi:10.1126/scisignal.3114pe10

  89. Greenough MA, Volitakis I, Li QX, Laughton K, Evin G, Ho M, Dalziel AH, Camakaris J, Bush AI (2011) Presenilins promote the cellular uptake of copper and zinc and maintain copper chaperone of SOD1-dependent copper/zinc superoxide dismutase activity. J Biol Chem 286:9776–9786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Southon A, Greenough MA, Ganio G, Bush AI, Burke R, Camakaris J (2013) Presenilin promotes dietary copper uptake. PLoS One 8, e62811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Prusiner SB (1997) Prion diseases and the BSE crisis. Science 278:245–251

    Article  CAS  PubMed  Google Scholar 

  92. Mizuno D, Koyama H, Ohkawara S, Sadakane Y, Kawahara M (2014) Involvement of trace elements in the pathogenesis of prion diseases. Curr Pharam Biotech 15:1049–1057

    Article  CAS  Google Scholar 

  93. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) The cellular prion protein binds copper in vivo. Nature 390:684–687

    Article  CAS  PubMed  Google Scholar 

  94. Jackson GS, Murray I, Hosszu LL, Gibbs N, Waltho JP, Clarke AR, Collinge J (2001) Location and properties of metal-binding sites on the human prion protein. Proc Natl Acad Sci U S A 98:8531–8535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brown DR (2009) Brain proteins that mind metals: a neurodegenerative perspective. Dalton Trans 21:4069–4076

    Article  CAS  Google Scholar 

  96. Gasperini L, Meneghetti E, Pastore B, Benetti F, Legname G (2015) Prion protein and copper cooperatively protect neurons by modulating NMDA receptor through S-nitrosylation. Antioxid Redox Signal 22:772–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Alfaidy N, Chauvet S, Donadio-Andrei S, Salomon A, Saoudi Y, Richaud P, Aude-Garcia C, Hoffmann P, Andrieux A, Moulis JM, Feige JJ, Benharouga M (2013) Prion protein expression and functional importance in developmental angiogenesis: role in oxidative stress and copper homeostasis. Antioxid Redox Signal 18:400–411

    Article  CAS  PubMed  Google Scholar 

  98. Rotilio G1, Carrì MT, Rossi L, Ciriolo MR (2000) Copper-dependent oxidative stress and neurodegeneration. IUBMB Life 50:309–314

    Google Scholar 

  99. White AR, Collins SJ, Maher F, Jobling MF, Stewart LR, Thyer JM, Beyreuther K, Masters CL, Cappai R (1999) Prion protein-deficient neurons reveal lower glutathione reductase activity and increased susceptibility to hydrogen peroxide toxicity. Am J Pathol 155:1723–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stellato F, Spevacek A, Proux O, Minicozzi V, Millhauser G, Morante S (2011) Zinc modulates copper coordination mode in prion protein octa-repeat subdomains. Eur Biophys J 40:1259–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schmitt-Ulms G, Ehsani S, Watts JC, Westaway D, Wille H (2009) Evolutionary descent of prion genes from the ZIP family of metal ion transporters. PLoS One 4, e7208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Pocanschi CL, Ehsani S, Mehrabian M, Wille H, Reginold W, Trimble WS, Wang H, Yee A, Arrowsmith CH, Bozóky Z, Kay LE, Forman-Kay JD, Rini JM, Schmitt-Ulms G (2013) The ZIP5 ectodomain co-localizes with PrP and may acquire a PrP-like fold that assembles into a dimer. PLoS One 8, e72446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Watt NT, Griffiths HH, Hooper NM (2013) Neuronal zinc regulation and the prion protein. Prion 7:203–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Singh N, Haldar S, Tripathi AK, McElwee MK, Horback K, Beserra A (2014) Iron in neurodegenerative disorders of protein misfolding: a case of prion disorders and Parkinson’s disease. Antioxid Redox Signal 21:471–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Singh A, Kong Q, Luo X, Petersen RB, Meyerson H, Singh N (2009) Prion protein (PrP) knock-out mice show altered iron metabolism: a functional role for PrP in iron uptake and transport. PLoS One 4, e6115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Haldar S, Beveridge J, Wong J, Singh A, Galimberti D, Borroni B, Zhu X, Blevins J, Greenlee J, Perry G, Mukhopadhyay CK, Schmotzer C, Singh N (2013) A low-molecular-weight ferroxidase is increased in the CSF of sCJD cases: CSF ferroxidase and transferrin as diagnostic biomarkers for sCJD. Antioxid Redox Signal 19:1662–1675

    Google Scholar 

  107. Johnson CJ, Gilbert PU, Abrecht M, Baldwin KL, Russell RE, Pedersen JA, Aiken JM, McKenzie D (2013) Low copper and high manganese levels in prion protein plaques. Viruses 5:654–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Thackray AM, Madec JY, Wong E, Morgan-Warren R, Brown DR, Baron T, Bujdoso R (2003) Detection of bovine spongiform encephalopathy, ovine scrapie prion-related protein (PrPSc) and normal PrPc by monoclonal antibodies raised to copper-refolded prion protein. Biochem J 370:81–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Davies P, Brown DR (2009) Manganese enhances prion protein survival in model soils and increases prion infectivity to cells. PLoS One 4:e7518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. White SN, O’Rourke KI, Gidlewski T, VerCauteren KC, Mousel MR, Phillips GE, Spraker TR (2010) Increased risk of chronic wasting disease in Rocky Mountain elk associated with decreased magnesium and increased manganese in brain tissue. Can J Vet Res 74:50–53

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Slivarichová D, Mitrová E, Ursínyová M, Uhnáková I, Koscová S, Wsólová L (2011) Geographic accumulation of Creutzfeldt-Jakob disease in Slovakia–environmental metal imbalance as a possible cofactor. Cent Eur J Public Health 19:158–164

    PubMed  Google Scholar 

  112. Kawahara M, Koyama H, Nagata T, Sadakane Y (2011) Zinc, copper, and carnosine attenuate neurotoxicity of prion fragment PrP106-126. Metallomics 3:726–734

    Article  CAS  PubMed  Google Scholar 

  113. Bonetto V, Massignan T, Chiesa R, Morbin M, Mazzoleni G, Diomede L, Angeretti N, Colombo L, Forloni G, Tagliavini F, Salmona M (2002) Synthetic miniprion PrP106. J Biol Chem 277:31327–31334

    Article  CAS  PubMed  Google Scholar 

  114. Grasso D, Milardi D, La Rosa C, Rizzarelli E (2004) The different role of Cu++ and Zn++ ions in affecting the interaction of prion peptide PrP106-126 with model membranes. Chem Commun (Camb) 21:246–247

    Article  CAS  Google Scholar 

  115. Inayathullah M, Satheeshkumar KS, Malkovskiy AV, Carre AL, Sivanesan S, Hardesty JO, Rajadas J (2013) Solvent microenvironments and copper binding alters the conformation and toxicity of a prion fragment. PLoS One 8, e85160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Thakur AK, Srivastava AK, Srinivas V, Chary KV, Rao CM (2011) Copper alters aggregation behavior of prion protein and induces novel interactions between its N- and C-terminal regions. J Biol Chem 286:38533–38545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ward B, Walker K, Exley C (2008) Copper(II) inhibits the formation of amylin amyloid in vitro. J Inorg Biochem 102:371–375

    Article  CAS  PubMed  Google Scholar 

  118. Dettmer U, Selkoe D, Bartels T (2015) New insights into cellular α-synuclein homeostasis in health and disease. Curr Opin Neurobiol 36:15–22

    Article  PubMed  CAS  Google Scholar 

  119. Chen P, Chakraborty S, Mukhopadhyay S, Lee E, Paoliello MM, Bowman AB, Aschner M (2015) Manganese homeostasis in the nervous system. J Neurochem 134:601–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276:44284–44296

    Article  CAS  PubMed  Google Scholar 

  121. Tavassoly O, Nokhrin S, Dmitriev OY, Lee JS (2014) Cu(II) and dopamine bind to α-synuclein and cause large conformational changes. FEBS J 281:2738–2753

    Article  CAS  PubMed  Google Scholar 

  122. Cahill CM, Lahiri DK, Huang X, Rogers JT (2009) Amyloid precursor protein and alpha synuclein translation, implications for iron and inflammation in neurodegenerative diseases. Biochim Biophys Acta 1790:615–628

    Article  CAS  PubMed  Google Scholar 

  123. Kienzl E, Jellinger K, Stachelberger H, Linert W (1999) Iron as catalyst for oxidative stress in the pathogenesis of Parkinson’s disease? Life Sci 65:1973–1976

    Article  CAS  PubMed  Google Scholar 

  124. Lee J, Grabb MC, Zipfel GJ, Choi DW (2000) Brain tissue responses to ischemia. J Clin Invest 106:723–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Weiss JH, Sensi SL, Koh JY (2000) Zn(2+): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 21:395–401

    Article  CAS  PubMed  Google Scholar 

  126. Frederickson CJ, Klitenick MA, Manton WI, Kirkpatrick JB (1983) Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat. Brain Res 27:335–339

    Article  Google Scholar 

  127. Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016

    Article  CAS  PubMed  Google Scholar 

  128. Calderone A1, Jover T, Mashiko T, Noh KM, Tanaka H, Bennett MV, Zukin RS (2004) Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death. J Neurosci 24:9903–9913

    Google Scholar 

  129. Weiss JH, Sensi SL (2000) Ca2+-Zn2+ permeable AMPA or kainate receptors: possible key factors in selective neurodegeneration. Trends Neurosci 23:365–371

    Article  CAS  PubMed  Google Scholar 

  130. Kawahara M, Kato-Negishi M, Kuroda Y (2002) Pyruvate blocks zinc-induced neurotoxicity in immortalized hypothalamic neurons. Cell Mol Neurobiol 22:87–93

    Article  CAS  PubMed  Google Scholar 

  131. Koyama H, Konoha K, Sadakane Y, Ohkawara S, Kawahara M (2012) Zinc neurotoxicity and the pathogenesis of vascular-type dementia: involvement of calcium dyshomeostasis and carnosine. J Clin Toxicol S3-002. doi:10.4172/2161-0495.S3-002

  132. Mellon PL, Windle JJ, Goldsmith PC, Padula CA, Roberts JL, Weiner RI (1990) Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5:1–10

    Google Scholar 

  133. Mizuno D, Kawahara M (2014) Carnosine: a possible drug for vascular dementia. J Vasc Med Surg 2:3. doi.org/10.4172/2329-6925.1000146

  134. Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci 17:5858–5867

    CAS  PubMed  Google Scholar 

  135. Wang X, Sommer FT, Hirsch JA (2011) Inhibitory circuits for visual processing in thalamus. Curr Opin Neurobiol 21:726–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mellone M, Pelucchi S, Alberti L, Genazzani AA, Di Luca M, Gardoni F (2015) Zinc transporter-1: a novel NMDA receptor-binding protein at the postsynaptic density. J Neurochem 132:159–168

    Article  CAS  PubMed  Google Scholar 

  137. Hipkiss AR (2009) Carnosine and its possible roles in nutrition and health. Adv Food Nutr Res 57:87–154

    Article  CAS  PubMed  Google Scholar 

  138. Singla N, Dhawan DK (2014) Zinc modulates aluminium-induced oxidative stress and cellular injury in rat brain. Metallomics 6:1941–1950

    Article  CAS  PubMed  Google Scholar 

  139. Zhang YH, Raymick J, Sarkar S, Lahiri DK, Ray B, Holtzman D, Dumas M, Schmued LC (2013) Efficacy and toxicity of clioquinol treatment and A-beta42 inoculation in the APP/PSI mouse model of Alzheimer’s disease. Curr Alzheimer Res 10:494–506

    Article  PubMed  CAS  Google Scholar 

  140. Faux NG, Ritchie CW, Gunn A, Rembach A, Tsatsanis A, Bedo J, Harrison J, Lannfelt L, Blennow K, Zetterberg H, Ingelsson M, Masters CL, Tanzi RE, Cummings JL, Herd CM, Bush AI (2010) PBT2 rapidly improves cognition in Alzheimer’s disease: additional phase II analyses. J Alzheimers Dis 20:509–516

    CAS  PubMed  Google Scholar 

  141. Crapper McLachlan DR, Dalton AJ, Kruck TP, Bell MY, Smith WL, Kalow W, Andrews DF (1991) Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337:1304–1308

    Article  CAS  PubMed  Google Scholar 

  142. Fine JM, Renner DB, Forsberg AC, Cameron RA, Galick BT, Le C, Conway PM, Stroebel BM, Frey WH, Hanson LR (2015) Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation. Neurosci Lett 584:362–367. doi:10.1016/j.neulet.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  143. Exley C (2007) Organosilicon therapy in Alzheimer’s disease? J Alzheimers Dis 11:301–302

    CAS  PubMed  Google Scholar 

  144. Bareggi SR, Braida D, Pollera C, Bondiolotti G, Formentin E, Puricelli M, Poli G, Ponti W, Sala M (2009) Effects of clioquinol on memory impairment and the neurochemical modifications induced by scrapie infection in golden hamsters. Brain Res 1280:195–200

    Article  CAS  PubMed  Google Scholar 

  145. Sigurdsson EM, Brown DR, Alim MA, Scholtzova H, Carp R, Meeker HC, Prelli F, Frangione B, Wisniewski T (2003) Copper chelation delays the onset of prion disease. J Biol Chem 278:46199–46202

    Article  CAS  PubMed  Google Scholar 

  146. Corona C, Frazzini V, Silvestri E, Lattanzio R, La Sorda R, Piantelli M, Canzoniero LM, Ciavardelli D, Rizzarelli E, Sensi SL (2011) Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xTg-AD mice. PLoS One 6:e17971. doi:10.1371/journal.pone.0017971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kawahara M, Konoha K, Nagata T, Sadakane Y (2007) Protective substances against zinc-induced neuronal death after ischemia: carnosine a target for drug of vascular type of dementia. Recent Patents CNS Drug Discov 2:145–149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Kawahara Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Mizuno, D., Kawahara, M. (2017). Link Between Metal Homeostasis and Neurodegenerative Diseases: Crosstalk of Metals and Amyloidogenic Proteins at the Synapse. In: Ogra, Y., Hirata, T. (eds) Metallomics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56463-8_14

Download citation

Publish with us

Policies and ethics