Skip to main content

Behavior of Fuels in Reactor

  • Chapter
  • First Online:
Tritium: Fuel of Fusion Reactors
  • 1491 Accesses

Abstract

This chapter is devoted to describe the behavior of fuels (D and T) in a reactor vessel . As given in Chap. 3, D and T are fueled in a reactor vessel with gas-puffing, pellet injection, or NBI. Among the total fuel throughput, only a few % are going into burning plasma , confined with the particle confinement time of a few second and exhausted or recycled. While the remaining part of the throughput is transported through scrape-off layers surrounding the burning plasma to evacuation pumps . Hence, all surfaces of the reactor vessel are exposed to neutral fuel gas with a pressure of a few Pa at the first wall and a few tens to a few hundreds Pa at the divertor. In addition, plasma facing surfaces are exposed to energetic particles, both ions and charge exchanged neutrals escaping from the plasma. The interaction of the gas with the surface is not special but just those occurring in a container with hydrogen gas inside. However, the interactions with the energetic particles and the plasma facing surfaces give significant effect both to the plasma and to the surfaces. A terminology “plasma wall interaction or plasma surface interaction ” is often used for the interactions of energetic particles with surface but seldom to include the interactions of thermalized or residual gas with surface. Accordingly, the fuel retention in the plasma facing wall, which is quite important for T safety and fuel self-efficiency, is not understood well and quite difficult to evaluate, as already discussed in Chap 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Yamamura. et al., Report of the IPP Nagoya, IPPJ-AM-26, 1983

    Google Scholar 

  2. C. Hopf, W. Jacob, J. Nucl. Mater. 342, 141–147 (2005)

    Google Scholar 

  3. A. A. Haasz, J. A. Stephens, E. Vietzke et al. Atomic and plasma-material interaction data for fusion, Part A, 7, 9–63 (1998)

    Google Scholar 

  4. J. Roth et al., J. Nucl. Mater. 337–339, 970 (2005)

    Article  Google Scholar 

  5. C. Björkas, K. Vörtler, K. Nordlund et al., New J. Phys. 11, 123017 (2009)

    Article  Google Scholar 

  6. G.F. Matthews, M. Beurskens, S. Brezinsek et al., Phys. Scr. T145, 014001 (2011)

    Article  Google Scholar 

  7. M. Shimada, R.A. Pitts, J. Nucl. Mater. 415, S1013–S1016 (2011)

    Article  Google Scholar 

  8. T. Tanabe, J. Nucl. Mater. 417, 545–550 (2011)

    Article  Google Scholar 

  9. T. Tanabe, Phys. Scr. T159 (014044), 12 (2014)

    Google Scholar 

  10. T. Tanabe, Fusion Eng. Des. 87, 722–727 (2012)

    Article  Google Scholar 

  11. T. Tanabe, N. Bekris, P. Coad et al., J. Nucl. Mater. 313–316, 478–490 (2003)

    Article  Google Scholar 

  12. G.F. Matthews, J. Nucl. Mater. 438, S2–S10 (2013)

    Article  Google Scholar 

  13. T. Tanabe, Tritium management in a fusion reactor—safety, handling and economical issues, eds. by S.-I. Itoh, S. Inagaki, M. Shindo, M. Yagi. Proceeding of 2nd ITER International Summer School: Confinement, American Institute of Physics, 112–126 (2009)

    Google Scholar 

  14. V. Philipps, Phys. Scr. T123, 24–32 (2006)

    Article  Google Scholar 

  15. T. Tanabe, K. Masaki, K. Sugiyama, et al. Phys. Scr. T138 (014006), 9 (2009)

    Google Scholar 

  16. E. Tsitrone, J. Nucl. Mater. 363–365, 12–23 (2007)

    Article  Google Scholar 

  17. K. Sugiyama, T. Tanabe, C.H. Skinner et al., Phys. Scr. T108, 68–71 (2004)

    Article  Google Scholar 

  18. T. Shibahara, T. Tanabe, Y. Hirohata et al., J. Nucl. Mater. 357, 115–125 (2006)

    Article  Google Scholar 

  19. T. Tanabe, K. Masaki, K. Sugiyama, M. Yoshida, Phys. Scr. T138 (014006),9 (2009)

    Google Scholar 

  20. T. Tanabe, K. Sugiyama, T. Shibahara et al., J. Nucl. Mater. 390–391, 705–708 (2009)

    Article  Google Scholar 

  21. B.B. Pégouriéa, C. Brosset, E. Delchambre et al., Phys. Scr. T111, 23–28 (2004)

    Article  Google Scholar 

  22. Michael D. Williams, Fusion Eng, Design 36, 135–142 (1997)

    Google Scholar 

  23. C.H. Skinner et al., J. Nucl. Mater. 241–243, 214–226 (1997)

    Article  Google Scholar 

  24. P. Andrew et al., J. Nucl. Mater. 266–269, 153–159 (1999)

    Article  Google Scholar 

  25. R.-D. Penzhorn, J.P. Coad, N. Bekris et al., Fusion Eng. Des. 56, 57, 105–116 (2001)

    Article  Google Scholar 

  26. K. Sugiyama, K. Miyasaka, T. Tanabe et al., J. Nucl. Mater. 313–316, 507–513 (2003)

    Article  Google Scholar 

  27. K. Masaki, K. Sugiyama, T. Tanabe, J. Nucl. Mater. 313–316, 514–518 (2003)

    Article  Google Scholar 

  28. K. Sugiyama, T. Tanabe, K. Miyasaka et al., J. Nucl. Mater. 329–333, 874–879 (2004)

    Article  Google Scholar 

  29. M. Yoshida, T. Tanabe, K. Sugiyama et al., Fusions Sci. Techol. 60, 1560–1563 (2011)

    Google Scholar 

  30. K. Sugiyama, T. Tanabe, K. Masaki, N. Miya, J. Nucl. Mater. 367–370, 1248–1253 (2007)

    Article  Google Scholar 

  31. J. Roth, E. Tsitrone, T. Loarer et al., Plasma Phys. Control. Fusion 50, 103001 (2008)

    Article  Google Scholar 

  32. M. Shimada, G. Cao, Y. Hatano, T. Oda, Phys. Scr. T145, 014051 (2011)

    Article  Google Scholar 

  33. Y. Hatano, M. Shimada, V.K. Alimov et al., J. Nucl. Mater. 438, S114–S119 (2013)

    Article  Google Scholar 

  34. T. Tanabe, Physica Scripta, T159 (2014) 014044 (12p)

    Google Scholar 

  35. T. Tanabe, J. Nucl. Mater. 438, S19–S26 (2013)

    Article  Google Scholar 

  36. V. Philipps, J. Nucl. Mater. 363–365, 12–23 (2007)

    Google Scholar 

  37. M. Yoshida, T. Tanabe et al., J. Nucl. Mater. 417, 620–623 (2011)

    Article  Google Scholar 

  38. M. Yoshida, T. Tanabe, A. Adachi et al., J. Nucl. Mater. 438, S1261–S1265 (2013)

    Article  Google Scholar 

  39. D. Hoffman, B. Singh, J.H. Thomas, Handbook of Vacuum Science and Technology. (Academic Press, 1998)

    Google Scholar 

  40. ITER Technical Basis 2002, ITER EDA, Documentation Series No. 24, IAEA, Vienna, 2002

    Google Scholar 

  41. N. Enomoto, S. Muto, T. Tanabe et al., J. Nucl. Mater. 385, 606–614 (2009)

    Article  Google Scholar 

  42. S. Higashijima, The JT 60 Team. J. Plasma Fusion Res. 75, 1297–1304 (1999). (in Japanese)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Tanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Tanabe, T. (2017). Behavior of Fuels in Reactor. In: Tanabe, T. (eds) Tritium: Fuel of Fusion Reactors . Springer, Tokyo. https://doi.org/10.1007/978-4-431-56460-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56460-7_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56458-4

  • Online ISBN: 978-4-431-56460-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics