Skip to main content

Toward Understanding Global Flow Structure

  • Conference paper
  • First Online:
Mathematical Fluid Dynamics, Present and Future

Abstract

Flows in nature are generally coupled with the environment. Also, flow structures in the forms of convection rolls, vortices, boundary layers, for example, are often coupled with flow structures in other form(s) as well as the external environments such as the boundary motion and the temperature gradient. Whole flow structure in such cases is often characterized by multi-scale or hierarchy, therefore, we will term such flow structures “global flow structure”. Clearly, the global flow structure is complex in both space and scales, but there are general viewpoints applicable to this category of the flow, by which we can tackle with new phenomena. In this review, we discuss the global flow structure in both views of typical problems and analysis methods itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iima, M., Tasaka, Y., Watanabe, T.: Analysis of global flow structure. GAKUTO Int. Ser. Math. Sci. Appl. 34, 25–38 (2011)

    MathSciNet  Google Scholar 

  2. Hill, N.A., Pedley, T.J.: Bioconvection. Fluid Dyn. Res. 37(1-2), 1–20 (2005)

    Google Scholar 

  3. Ishikawa, T.: Suspension biomechanics of swimming microbes. J. Royal Soc. Interface 6(39), 815–834 (2009)

    Article  Google Scholar 

  4. Platt, J.: Bioconvection patterns in cultures of free-swimming organisms. Science 133, 1766–1767 (1961)

    Article  Google Scholar 

  5. Shoji, E., Nishimori, H., Awazu, A., Izumi, S., Iima, M.: Localized bioconvection patterns and their initial state dependency in euglena gracilis suspensions in an annular container. J. Phys. Soc. Jpn. 83, 043001 (2014)

    Google Scholar 

  6. Suematsu, N.J., Awazu, A., Izumi, S., Noda, S., Nakata, S., Nishimori, H.: Localized bioconvection of euglena caused by phototaxis in the lateral direction. J. Phys. Soc. Jpn. 80(6), 064003 (2011)

    Google Scholar 

  7. Dudley, R.: The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton University Press, Princeton (2000)

    Google Scholar 

  8. Iima, M., Yanagita, T.: Is a two-dimensional butterfly able to fly by symmetric flapping? J. Phys. Soc. Jpn 70(1), 5–8 (2001)

    Article  MATH  Google Scholar 

  9. Iima, M.: A paradox of hovering insect in two-dimensional space. J. Fluid. Mech. 617, 207–229 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iima, M., Yokoyama, N., Hirai, N., Senda, K.: Controlling flow structures by wing motion in a flapping-flight model. Adv. Sci. Technol. 84, 59–65 (2013)

    Article  Google Scholar 

  11. Ota, K., Suzuki, K., Inamuro, T.: Lift generation by a two-dimensional symmetric flapping wing: immersed boundary-lattice Boltzmann simulations. Fluid Dyn. Res. 44(4), 045504 (2012)

    Google Scholar 

  12. Senda, K., Obara, T., Kitamura, M., Nishikata, T., Hirai, N., Iima, M., Yokoyama, N.: Modeling and emergence of flapping flight of butterfly based on experimental measurements. Robot. Auton. Syst. 60, 670–678 (2012)

    Article  Google Scholar 

  13. Senda, K., Obara, T., Kitamura, M., Yokoyama, N., Hirai, N., Iima, M.: Effects of structural flexibility of wings in flapping flight of butterfly. Bioinspiration Biomimetics 7(2), 025002 (2012)

    Google Scholar 

  14. Tanaka, H., Shimoyama, I.: Forward flight of swallowtail butterfly with simple flapping motion. Bioinspiration Biomimetics 5(2), 026003 (2010)

    Google Scholar 

  15. Yokoyama, N., Senda, K., Iima, M., Hirai, N.: Aerodynamic forces and vortical structures in flapping butterfly’s forward flight. Phys. Fluids 25, 021902 (2013)

    Google Scholar 

  16. Abderrahmane, H.A., Siddiqui, K., Vatistas, G.H.: Rotating waves within a hollow vortex core. Exp. Fluids 50(3), 677–688 (2010)

    Article  Google Scholar 

  17. Bach, B., Linnartz, E.C., Vested, M.H., Andersen, A., Bohr, T.: From Newton’s bucket to rotating polygons: experiments on surface instabilities in swirling flows. J. Fluid Mech. 759, 386–403 (2014)

    Article  Google Scholar 

  18. Bergmann, R., Tophoj, L., Homan, T.A.M., Hersen, P., Andersen, A., Bohr, T.: Polygon formation and surface flow on a rotating fluid surface. J. Fluid Mech. 679, 415–431 (2011)

    Article  MATH  Google Scholar 

  19. Iga, K., Yokota, S., Watanabe, S., Ikeda, T., Niino, H., Misawa, N.: Various phenomena on a water vortex in a cylindrical tank over a rotating bottom. Fluid Dyn. Res. 46(3), 031409 (2014)

    Google Scholar 

  20. Jansson, T., Haspang, M., Jensen, K.R., Hersen, P., Bohr, T.: Polygons on a rotating fluid surface. Phys. Rev. Lett. 96(17), 1–4 (2006)

    Google Scholar 

  21. Mougel, J., Fabre, D., Lacaze, L.: Waves and instabilities in rotating free surface flows. Mech. Ind. 15(2), 107–112 (2014)

    Article  Google Scholar 

  22. Tophøj, L., Mougel, J., Bohr, T., Fabre, D.: Rotating polygon instability of a swirling free surface flow. Phys. Rev. Lett. 110(19), 194502 (2013)

    Google Scholar 

  23. Vatistas, G.H.: A note on liquid vortex sloshing and Kelvin’s equilibria. J. Fluid. Mech. 217, 241–248 (1990)

    Article  Google Scholar 

  24. Iima, M., Iijima, Y., Sato, Y., Tasaka, Y.: A time-series analysis of the free-surface motion of rotational flow. Theor. Appl. Mech. Jpn. 59, 187–193 (2011)

    Google Scholar 

  25. Suzuki, T., Iima, M., Hayase, Y.: Surface switching of rotating fluid in a cylinder. Phys. Fluilds 18, 101701 (2006)

    Google Scholar 

  26. Tasaka, Y., Ito, K., Iima, M.: Visualization of a rotating flow under large-deformed free surface using anisotropic flakes. J. Vis. 11, 163–172 (2008)

    Article  Google Scholar 

  27. Tasaka, Y., Iima, M.: Flow transitions in the surface switching of rotating fluid. J. Fluid. Mech. 636, 475–484 (2009)

    Article  MATH  Google Scholar 

  28. Makoto, I., Yuji, T.: Flow structures and their dynamics during surface switching of rotation fluid. Part I: Quarupole Flow Associated with Asymmetric Surface Shape (in preparation)

    Google Scholar 

  29. Tasaka, Y., Iima, I.: Flow structures and their dynamics during surface switching of rotating fluid. Part 2: Influence of Disk-Rim-Gap on the Switching (in preparation)

    Google Scholar 

  30. Barten, W., Lucke, M., Kamps, M., Schmits, R.: Convection in binary fluid mixtures. I extended traveling-wave and stationary states. Phys. Rev. E 51, 5636–5661 (1995)

    Article  Google Scholar 

  31. Barten, W., Lucke, M., Kamps, M., Schmits, R.: Convection in binary fluid mixtures. IILocalized traveilng waves. Phys. Rev. E 51, 5662–5679 (1995)

    Article  Google Scholar 

  32. Batiste, O., Knobloch, E., Alonso, A., Mercader, I.: Spatially localized binary-fluid convection. J. Fluid. Mech. 560, 149–158 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Iima, M., Nishiura, Y.: Unstable periodic solution controlling collision of localized convection cells in binary fluid mixture. Phys. D 238, 449–460 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kolodner, P.: Interactions of localized pulses of traveling-wave convection with propagating disturbances. Phys. Rev. A 42, 7504–7506 (1990)

    Article  Google Scholar 

  35. Kolodner, P.: Drift, shape, and intrinsic destabilization of pulses of traveling-wave convection. Phys. Rev. A 44, 6448–6465 (1991)

    Article  Google Scholar 

  36. Niemela, J.J., Ahlers, G., Cannell, D.S.: Localized traveling-wave states in binary-fluid convection. Phys. Rev. Lett. 64, 1365–1368 (1990)

    Article  Google Scholar 

  37. Watanabe, T., Toyabe, K., Iima, M., Nishiura, Y.: Time-periodic traveling solutions of localized convection cells in binary fluid mixture. Theor. Appl. Mech. Jpn. 59, 211–219 (2011)

    Google Scholar 

  38. Watanabe, T., Iima, M., Nishiura, Y.: Spontaneous formation of travelling localized structures and their asymptotic behaviour in binary fluid convection. J. Fluid Mech. 712, 219–243 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kawaharada, A., Shoji, E., Nishimori, H., Awazu, A., Izumi, S., Iima, M.: Cellular automata automatically constructed from a bioconvection pattern. In: Suzuki Y., Hagiya M. (eds.) Recent Advances in Natural Computing. Mathematics for Industry, vol. 14, pp. 15–25. Springer (2016)

    Google Scholar 

  40. Sato, Y., Iima, M., Tasaka, Y.: Random dynamics from a time series of rotating fluid. Hokkaido University Preprint Series in Mathematics, p. 979 (2011)

    Google Scholar 

  41. Yamaguchi, T., Iima, M.: Numerical analysis of transient orbits by the pullback method for covariant Lyapunov vector. Theor. Appl. Mech. Jpn. 63, 91–96 (2015)

    Google Scholar 

  42. Kawaharada, A., Iima, M.: Constructing cellular automaton models from observation data. In: 2013 First International Symposium on Computing and Networking, pp. 559–562. Ieee (2013)

    Google Scholar 

  43. Kawaharada, A., Iima, M.: An application of data-based construction method of cellular automata to physical phenomena. J. Cell. Automata (2015) in press

    Google Scholar 

  44. Barten, W., Lücke, M., Kamps, M.: Localized traveling-wave convection in binary-fluid mixtures. Phys. Rev. Lett. 66, 2621–2624 (1991)

    Article  Google Scholar 

  45. Pomeau, Y.: Front motion, metastability and subcritical bifurcations in hydrodynamics. Phys. D 23, 3–11 (1986)

    Article  Google Scholar 

  46. Burke, J., Knobloch, E.: Homoclinic snaking: structure and stability. Chaos (Woodbury, N.Y.) 17(3), 037102 (2007)

    Google Scholar 

  47. Kazutaka, T.: Collision dynamics of localized convection cells in binary fluid mixture: network structure and collision orbit. Master thesis, Hokkaido University (in Japanese) (2009)

    Google Scholar 

  48. Iima, M., Nishiura, Y.: Collision of localized traveling-wave convection cells in binary fluid. GAKUTO Int. Ser. Math. Sci. Appl. 22, 289–303 (2005)

    MATH  Google Scholar 

  49. Nishiura, Y., Teramoto, T., Ueda, K.I.: Scattering of traveling spots in dissipative systems. Chaos 15, 47509 (2005)

    Google Scholar 

  50. Pedley, T.J., Kessler, J.O.: Hydrodynamic phenomema in suspensions of swimming microorganisms. Ann. Rev. Fluid Mech. 24, 313–358 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  51. Jánosi, I., Kessler, J., Horváth, V.: Onset of bioconvection in suspensions of Bacillus subtilis. Phys. Rev. E 58(4), 4793–4800 (1998). http://pre.aps.org/abstract/PRE/v58/i4/p4793_1

    Google Scholar 

  52. Wager, H.: On the effect of gravity upon the movements and aggregation of euglena viridis, ehrb., and other micro-organisms. Philos. Trans. Royal Soc. B: Biol. Sci. 201(274–281), 333–390 (1911)

    Article  Google Scholar 

  53. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover Publications (1981)

    Google Scholar 

  54. Ghorai, S., Panda, M.K., Hill, N.a.: Bioconvection in a suspension of isotropically scattering phototactic algae. Phys. Fluids 22(7), 071901 (2010)

    Google Scholar 

  55. Ghorai, S., Panda, M.: Bioconvection in an anisotropic scattering suspension of phototactic algae. Eur. J. Mech.- B/Fluids 41, 81–93 (2013)

    Article  MathSciNet  Google Scholar 

  56. Vincent, R., Hill, N.: Bioconvection in a suspension of phototactic algae. J. Fluid Mech. 327, 343–371 (1996)

    Article  MATH  Google Scholar 

  57. Williams, C.R., Bees, M.A.: A tale of three taxes: photo-gyro-gravitactic bioconvection. J. Exp. Biol. 214(Pt 14), 2398–2408 (2011)

    Article  Google Scholar 

  58. Williams, C.R., Bees, M.A.: Photo-gyrotactic bioconvection. J. Fluid Mech. 678, 41–86 (2011)

    Google Scholar 

  59. Tasaka, Y., Iima, M., Ito, K.: Rotataing flow transition related to surface switching. J. Phys.: Conf. Ser. 137, 12030 (2008)

    Google Scholar 

  60. Kawaharada, A., Iima, M., Tasaka, Y.: A Markov chain analysis of rotating flow with free surface. Abstracts of the Joint-Workshop on the Applied Mathematics 2013 (2013), pp. 132–135 (in Japanese)

    Google Scholar 

  61. Ginelli, F., Poggi, P.: Turchi, A., Chaté, H., Livi, R., Politi, A.: Characterizing dynamics with covariant lyapunov vectors. Phys. Rev. Lett. 99, 1–4 (2007)

    Google Scholar 

Download references

Acknowledgements

The authors were major members of the CREST project “A challenge to unsolved problems in fluid engineering with modern mathematical analysis” headed by Professor Yoshihiro Shibata in Waseda University in the JST mathematics program “Alliance for breakthrough between mathematics and sciences” governed by Professor Yasumasa Nishiura in Tohoku University from April 1st, 2010 to March 31st, 2015. We would like to appreciate both financial and academic support for this project. The part of this study was supported by CREST No. PJ74100011, and Grants-in-Aid for Scientific Research (26400396, 25289062, 23540433, 21340019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Iima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this paper

Cite this paper

Iima, M., Yamaguchi, T., Watanabe, T., Kawaharada, A., Tasaka, Y., Shoji, E. (2016). Toward Understanding Global Flow Structure. In: Shibata, Y., Suzuki, Y. (eds) Mathematical Fluid Dynamics, Present and Future. Springer Proceedings in Mathematics & Statistics, vol 183. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56457-7_6

Download citation

Publish with us

Policies and ethics