Skip to main content

Error Estimates of a Stabilized Lagrange–Galerkin Scheme of Second-Order in Time for the Navier–Stokes Equations

  • Conference paper
  • First Online:
Mathematical Fluid Dynamics, Present and Future

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 183))

Abstract

Error estimates with optimal convergence orders are proved for a stabilized Lagrange–Galerkin scheme of second-order in time for the Navier–Stokes equations. The scheme is a combination of Lagrange–Galerkin method and Brezzi–Pitkäranta’s stabilization method. It maintains the advantages of both methods; (i) It is robust for convection-dominated problems and the system of linear equations to be solved is symmetric. (ii) Since the P1 finite element is employed for both velocity and pressure, the number of degrees of freedom is much smaller than that of other typical elements for the equations, e.g., P2/P1. Therefore, the scheme is efficient especially for three-dimensional problems. The second-order accuracy in time is realized by Adams-Bashforth’s (two-step) method for the discretization of the material derivative along the trajectory of fluid particles. The theoretical convergence orders are recognized by two- and three-dimensional numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achdou, Y., Guermond, J.-L.: Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 37, 799–826 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  3. Boukir, K., Maday, Y., Métivet, B., Razafindrakoto, E.: A high-order characteristics/finite element method for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 25, 1421–1454 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brezzi, F., Douglas Jr., J.: Stabilized mixed methods for the Stokes problem. Numer. Math. 53, 225–235 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Hackbusch, W. (ed.) Efficient Solutions of Elliptic Systems, pp. 11–19. Vieweg, Wiesbaden (1984)

    Chapter  Google Scholar 

  6. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  7. Douglas Jr., J., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  9. Ewing, R.E., Russell, T.F.: Multistep Galerkin methods along characteristics for convection-diffusion problems. In: Vichnevetsky, R., Stepleman, R.S. (eds.) Advances in Computer Methods for Partial Differential Equations, vol. IV, pp. 28–36. IMACS (1981)

    Google Scholar 

  10. Franca, L.P., Stenberg, R.: Error analysis of some Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28, 1680–1697 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  12. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem, Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Notsu, H.: Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme. Trans Jpn. Soc. Comput. Eng. Sci. 20080032 (2008)

    Google Scholar 

  15. Notsu, H., Tabata, M.: A combined finite element scheme with a pressure stabilization and a characteristic-curve method for the Navier-Stokes equations. Trans. Jpn. Soc. Ind. Appl. Math. 18, 427–445 (2008). (in Japanese)

    Google Scholar 

  16. Notsu, H., Tabata, M.: Error estimates of a pressure-stabilized characteristics finite element scheme for the Oseen equations. J. Sci. Comput. 65, 940–955 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Notsu, H., Tabata, M.: Error estimates of a stabilized Lagrange–Galerkin scheme for the Navier–Stokes equations. ESAIM: M2AN, 50, 361–380 (2016)

    Google Scholar 

  18. Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math. 38, 309–332 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ravindran, S.S.: Convergence of extrapolated BDF2 finite element schemes for unsteady penetrative convection model. Numer. Funct. Anal. Optim. 33, 48–79 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection-diffusion problems. Numer. Math. 92, 161–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  22. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs, New Jersey (1971)

    MATH  Google Scholar 

  23. Süli, E.: Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math. 53, 459–483 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tabata, M., Uchiumi, S.: An exatly computable Lagrange–Galerkin scheme for the Navier–Stokes equations and its error estimates. Math. comput. (To appear)

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS (the Japan Society for the Promotion of Science) under the Japanese-German Graduate Externship (Mathematical Fluid Dynamics) and Grant-in-Aid for Scientific Research (S), No. 24224004. The authors are indebted to JSPS also for Grant-in-Aid for Young Scientists (B), No. 26800091 to the first author and for Grant-in-Aid for Scientific Research (C), No. 25400212 to the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Notsu .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Proof of Lemma 5

From (18.22), there exists a non-negative sequence \(\{\tilde{z}_n\}_{n\geqslant 2}\) such that

$$\begin{aligned} \frac{1}{\varDelta t}\Bigl ( \frac{3}{2} x_n - 2 x_{n-1} + \frac{1}{2} x_{n-2} + y_n - y_{n-1} \Bigr ) + \tilde{z}_n = a_0 (x_{n-1}+x_{n-2}) + b_n,\quad \forall n\geqslant 2, \end{aligned}$$

where \(\tilde{z}_n\) satisfies

$$\begin{aligned} z_n \leqslant \tilde{z}_n, \quad \forall n\geqslant 2. \end{aligned}$$
(18.48)

Let p and \(q\in \mathbb {R}~(q<p)\) be the roots of the quadratic equation \((3/2)x^2 - 2x + 1/2 = a_0\varDelta t (x+1)\) and \(\lambda \equiv 2/3\). We note that p and q satisfy

$$\begin{aligned} 0 \leqslant q < 1 \leqslant p \end{aligned}$$
(18.49)

from \(\varDelta t\in (0, 1/(2a_0)]\). Let any \(n\geqslant 2\) be fixed. We have

$$\begin{aligned} x_n - p x_{n-1} + \lambda (y_n - y_{n-1} ) + \lambda \varDelta t\tilde{z}_n = q (x_{n-1} - p x_{n-2}) + \lambda \varDelta t b_n,\\ x_n - q x_{n-1} + \lambda (y_n - y_{n-1} ) + \lambda \varDelta t\tilde{z}_n = p (x_{n-1} - q x_{n-2}) + \lambda \varDelta t b_n, \end{aligned}$$

which lead to

$$\begin{aligned} x_n - p x_{n-1} + \lambda \Bigl \{ \sum _{i=2}^n q^{n-i} y_i&- \sum _{i=1}^{n-1} q^{n-1-i} y_i \Bigl \} + \lambda \varDelta t \sum _{i=2}^n q^{n-i} \tilde{z}_i \nonumber \\&= q^{n-1} (x_1 - p x_0) + \lambda \varDelta t \sum _{i=2}^n q^{n-i} b_i, \end{aligned}$$
(18.50a)
$$\begin{aligned} x_n - q x_{n-1} + \lambda \Bigl \{ \sum _{i=2}^n p^{n-i} y_i&- \sum _{i=1}^{n-1} p^{n-1-i} y_i \Bigl \} + \lambda \varDelta t \sum _{i=2}^n p^{n-i} \tilde{z}_i \nonumber \\&= p^{n-1} (x_1 - q x_0) + \lambda \varDelta t \sum _{i=2}^n p^{n-i} b_i. \end{aligned}$$
(18.50b)

Multiplying (18.50a) by q and (18.50b) by p and subtracting the first equation from the second, we get

$$\begin{aligned} (p-q) x_n&+ \lambda \Bigl \{ \sum _{i=2}^n (p^{n+1-i}-q^{n+1-i}) y_i - \sum _{i=1}^{n-1} (p^{n-i}-q^{n-i}) y_i \Bigl \} \nonumber \\&+ \lambda \varDelta t \sum _{i=2}^n (p^{n+1-i}-q^{n+1-i}) \tilde{z}_i \nonumber \\ =&\ (p^n-q^n)x_1-pq(p^{n-1}-q^{n-1})x_0 + \lambda \varDelta t \sum _{i=2}^n (p^{n+1-i}-q^{n+1-i}) b_i. \end{aligned}$$
(18.51)

The definition of p and q and (18.49) imply that

$$\begin{aligned} (p-q) y_n&- (p^n - q^n) y_1 \leqslant \sum _{i=2}^n (p^{n+1-i}-q^{n+1-i}) y_i - \sum _{i=1}^{n-1} (p^{n-i}-q^{n-i}) y_i,\end{aligned}$$
(18.52a)
$$\begin{aligned} \frac{2}{3} \leqslant p-q&\leqslant p^{n+1-i} - q^{n+1-i} \leqslant p^{n-1} - q^{n-1} \leqslant p^n - q^n,\quad i\in \{ 2,\ldots ,n\}, \end{aligned}$$
(18.52b)
$$\begin{aligned} p^n - q^n&\leqslant p^n = \Bigl \{ \frac{1}{3} \Bigl ( 2 + a_0\varDelta t + \sqrt{1+10a_0\varDelta t + a_0^2\varDelta t^2} \Bigr ) \Bigr \}^n \nonumber \\&\leqslant \{ 1+2a_0\varDelta t \}^n \leqslant \exp (2a_0n\varDelta t). \end{aligned}$$
(18.52c)

Combining (18.51) with (18.52), we have

$$\begin{aligned}&(p-q) \Bigl ( x_n + \lambda y_n + \lambda \varDelta t \sum _{i=2}^n \tilde{z}_i \Bigr ) \nonumber \\&\leqslant (p^n-q^n)x_1 - pq(p^{n-1}-q^{n-1})x_0 + \lambda (p^n - q^n) y_1 + \lambda \varDelta t (p^n-q^n) \sum _{i=2}^n b_i \nonumber \\&\leqslant (p^n-q^n) \Bigl (x_1 + \lambda y_1 + \lambda \varDelta t \sum _{i=2}^n b_i \Bigr ) \nonumber \\&\leqslant \exp (2a_0n\varDelta t) \Bigl (x_1 + \lambda y_1 + \lambda \varDelta t \sum _{i=2}^n b_i \Bigr ), \end{aligned}$$
(18.53)

and obtain the desired result as follows:

$$\begin{aligned} \text {LHS of}~(18.23)&\leqslant x_n + \lambda y_n + \lambda \varDelta t \sum _{i=2}^n \tilde{z}_i \quad \text {(by}~(18.48)) \\&\leqslant \frac{3}{2} \exp (2a_0n\varDelta t) \Bigl (x_1 + \lambda y_1 + \lambda \varDelta t \sum _{i=2}^n b_i \Bigr ) \quad \text {(by}~(18.53), (18.52b)). \quad \end{aligned}$$

   \(\square \)

1.2 Proof of Lemma 6

Let \(t(s)\equiv t^{n-1} +s\varDelta t~(s\in [0,1])\). We prove (18.29a). Let \(y(x, s)\equiv x-(1-s)u^{(n-1)*}(x)\varDelta t\). Using the identities

$$\begin{aligned} g^\prime (1)-\Bigl \{ \frac{3}{2}g(1)-2g(0)+\frac{1}{2}g(-1) \Bigr \}&= 2\int _0^1sds\int _{2s-1}^sg^{\prime \prime \prime }(s_1)ds_1,\\ \tilde{g}(1)-2\tilde{g}(0)+\tilde{g}(-1)&= \int _0^1ds\int _{s-1}^s \tilde{g}^{\prime \prime }(s_1)ds_1, \end{aligned}$$

for \(g(s) = u(y(\cdot ,s),t(s))\) and \(\tilde{g}(s) = u(\cdot ,t(s))\), we have

$$\begin{aligned} R_{h1}^n(x)&= \Bigl \{ \Bigl ( \frac{\partial {}}{\partial {t}} + u^n(x)\cdot \nabla \Bigr ) u \Bigr \} (x, t^n) \nonumber \\&\quad - \frac{1}{2\varDelta t} \bigl \{ 3u^n - 4u^{n-1} \circ X_1(u^{(n-1)*},\varDelta t) + u^{n-2} \circ X_1(u^{(n-1)*},2\varDelta t) \bigr \}(x) \nonumber \\&= \Bigl \{ \Bigl ( \frac{\partial {}}{\partial {t}} + u^{(n-1)*}(x)\cdot \nabla \Bigr ) u \Bigr \} (x, t^n) \nonumber \\&\quad - \frac{1}{2\varDelta t} \bigl \{ 3u^n - 4u^{n-1} \circ X_1(u^{(n-1)*},\varDelta t) + u^{n-2} \circ X_1(u^{(n-1)*},2\varDelta t) \bigr \}(x) \nonumber \\&\quad + \bigl \{ \bigl ( (u^n - u^{(n-1)*})(x)\cdot \nabla \bigr ) u^n \bigr \} (x) \nonumber \\&= 2\varDelta t^2 \int _0^1sds \int _{2s-1}^{s} \Bigl \{ \Bigl ( \frac{\partial {}}{\partial {t}} + u^{(n-1)*}(x)\cdot \nabla \Bigr )^3 u \Bigr \} \bigl ( y(x,s_1), t(s_1) \bigr ) ds_1 \nonumber \\&\quad + \varDelta t^2 \int _0^1ds\int _{s-1}^s \Bigl \{ \Bigl ( \frac{\partial {^2u}}{\partial {t^2}} \bigl ( x, t(s_1) \bigr )\cdot \nabla \Bigr ) u^n \Bigr \} (x) ds_1, \end{aligned}$$

and

$$\begin{aligned} \Vert R_{h1}^n \Vert _0&\leqslant 2\varDelta t^2 \int _0^1sds \int _{2s-1}^{s} \Bigl \Vert \Bigl \{ \Bigl ( \frac{\partial {}}{\partial {t}} + u^{(n-1)*}(\cdot )\cdot \nabla \Bigr )^3 u \Bigr \} \bigl ( y(\cdot , s_1), t(s_1) \bigr )\Bigr \Vert _0 ds_1 \nonumber \\&\quad + \varDelta t^2 \int _0^1ds\int _{s-1}^s \Bigl \Vert \Bigl ( \frac{\partial {^2u}}{\partial {t^2}} \bigl ( \cdot , t(s_1) \bigr )\cdot \nabla \Bigr ) u^n \Bigr \Vert _0 ds_1 \nonumber \\&\leqslant c_u \varDelta t^2 \int _{-1}^{1} \Bigl ( \Bigl \Vert \Bigl \{ \Bigl ( \frac{\partial {}}{\partial {t}} + \nabla \Bigr )^3 u \Bigr \} \bigl ( \cdot , t(s_1) \bigr )\Bigr \Vert _0 + \Bigl \Vert \frac{\partial {^2u}}{\partial {t^2}} \bigl ( \cdot , t(s_1) \bigr ) \Bigr \Vert _0 \Bigr ) ds_1 \quad \text {(by}~(18.10)) \nonumber \\&\leqslant c_u^\prime \varDelta t^{3/2} \bigl ( \Vert u \Vert _{Z^3(t^{n-2},t^n)}+\Vert u \Vert _{H^2(t^{n-2},t^n; L^2)} \bigr ) \leqslant 2 c_u^\prime \varDelta t^{3/2} \Vert u \Vert _{Z^3(t^{n-2},t^n)}, \end{aligned}$$

which implies (18.29a).

Inequality (18.29b) is obtained as follows:

$$\begin{aligned} \Vert R_{h2}^n \Vert _0&\leqslant \alpha _{42} \Vert u^{(n-1)*} - u_h^{(n-1)*}\Vert _0 (2 \Vert u^{n-1}\Vert _{1,\infty } + \Vert u^{n-2}\Vert _{1,\infty }) \nonumber \\&\leqslant 3 \alpha _{42} \Vert u\Vert _{C(W^{1,\infty })} \Vert 2(\eta ^{n-1}-e_h^{n-1})-(\eta ^{n-2}-e_h^{n-2})\Vert _0 \nonumber \\&\leqslant c_u ( \Vert e_h^{n-1}\Vert _0 + \Vert e_h^{n-2}\Vert _0 + \Vert \eta ^{n-1}\Vert _0 + \Vert \eta ^{n-2}\Vert _0 ) \\&\leqslant c_u \{ \Vert e_h^{n-1}\Vert _0 + \Vert e_h^{n-2}\Vert _0 + \alpha _{31} h (\Vert (u,p)^{n-1}\Vert _{H^2\times H^1} + \Vert (u,p)^{n-2}\Vert _{H^2\times H^1} ) \} \nonumber \\&\leqslant c_{(u,p)} ( \Vert e_h^{n-1}\Vert _0 + \Vert e_h^{n-2}\Vert _0 + h ). \nonumber \end{aligned}$$
(18.54)

We prove (18.29c). Let \(y(x,s) \equiv x - (1-s) u_h^{(n-1)*}(x) \varDelta t\). Since we have

$$\begin{aligned} R_{h3}^n&= \frac{1}{\varDelta t} \Bigl \{ \frac{3}{2}\Bigl [ \eta \bigl ( y(\cdot ,s), t(s) \bigr ) \Bigr ]_{s=0}^1 - \frac{1}{2}\Bigl [ \eta \bigl ( y(\cdot ,s), t(s) \bigr ) \Bigr ]_{s=-1}^0 \Bigr \} \\&= \frac{3}{2} \int _0^1 \Bigl \{ \Bigl ( \frac{\partial {}}{\partial {t}} + u_h^{(n-1)*}(\cdot )\cdot \nabla \Bigr ) \eta \Bigr \} \bigl ( y(\cdot ,s), t(s) \bigr ) ds \\&\quad - \frac{1}{2} \int _{-1}^0 \Bigl \{ \Bigl ( \frac{\partial {}}{\partial {t}} + u_h^{(n-1)*}(\cdot )\cdot \nabla \Bigr ) \eta \Bigr \} \bigl ( y(\cdot ,s), t(s) \bigr ) ds, \end{aligned}$$

(18.29c) is obtained as follows:

$$\begin{aligned} \Vert R_{h3}^n \Vert _0&\leqslant \frac{3}{2}\int _0^1 \Bigl \Vert \Bigl \{ \Bigl ( \frac{\partial {}}{\partial {t}} + u_h^{(n-1)*}(\cdot )\cdot \nabla \Bigr ) \eta \Bigr \} \bigl ( y(\cdot , s), t(s) \bigr ) \Bigr \Vert _0 ds \\&\quad + \frac{1}{2}\int _{-1}^0 \Bigl \Vert \Bigl \{ \Bigl ( \frac{\partial {}}{\partial {t}} + u_h^{(n-1)*}(\cdot )\cdot \nabla \Bigr ) \eta \Bigr \} \bigl ( y(\cdot , s), t(s) \bigr ) \Bigr \Vert _0 ds \\&\leqslant \frac{3}{2} \int _{-1}^1 \Bigl ( \Bigl \Vert \frac{\partial {\eta }}{\partial {t}} \bigl ( y(\cdot , s), t(s) \bigr ) \Bigr \Vert _0 + \Vert u_h^{(n-1)*}\Vert _{0,\infty } \bigl \Vert \nabla \eta \bigl ( y(\cdot , s), t(s) \bigr ) \bigr \Vert _0 \Bigr ) ds \\&\leqslant \frac{3}{\sqrt{2}} \int _{-1}^1 \Bigl \{ \Bigl \Vert \frac{\partial {\eta }}{\partial {t}} \bigl ( \cdot , t(s) \bigr ) \Bigr \Vert _0 + \Vert u_h^{n-1}\Vert _{0,\infty } \bigl \Vert \nabla \eta \bigl ( \cdot , t(s) \bigr ) \bigr \Vert _0 \Bigr \} ds \quad \text {(by}~(18.10)) \\&\leqslant \frac{3}{\sqrt{2\varDelta t}} \Bigl ( \Bigl \Vert \frac{\partial {\eta }}{\partial {t}} \Bigr \Vert _{L^2(t^{n-2},t^n; L^2)} + \Vert u_h^{(n-1)*}\Vert _{0,\infty } \bigl \Vert \nabla \eta \bigr \Vert _{L^2(t^{n-2},t^n; L^2)} \Bigr ) \\&\leqslant \frac{3\alpha _{31}h}{\sqrt{2\varDelta t}} (\Vert u_h^{(n-1)*}\Vert _{0,\infty } + 1) \Vert (u,p) \Vert _{H^1(t^{n-2},t^n; H^2\times H^1)} \\&\leqslant \frac{ch}{\sqrt{\varDelta t}} (\Vert u_h^{(n-1)*}\Vert _{0,\infty } + 1) \Vert (u,p) \Vert _{H^1(t^{n-2},t^n; H^2\times H^1)}. \end{aligned}$$

We get (18.29d) from the estimate

$$\begin{aligned} \Vert R_{h4}^n \Vert _0&= \frac{1}{2\varDelta t} \bigl \Vert -4 \bigl \{ e_h^{n-1} - e_h^{n-1} \circ X_1(u_h^{(n-1)*},\varDelta t) \bigr \} + \bigl \{ e_h^{n-2} - e_h^{n-2} \circ X_1(u_h^{(n-1)*},2\varDelta t) \bigr \} \bigr \Vert _0 \\&\leqslant c\alpha _{40} \Vert u_h^{(n-1)*}\Vert _{0,\infty } (\Vert e_h^{n-1}\Vert _1 + \Vert e_h^{n-2}\Vert _1). \end{aligned}$$

   \(\square \)

1.3 Proof of Lemma 7

Inequality (18.44a) is obtained by combining (18.20b) with (18.54). For (18.44b) we divide \(R_{h3}^n\) into three terms,

$$\begin{aligned} R_{h3}^n&= \overline{D}_{\varDelta t}^{(2)} \eta ^n + \frac{1}{2\varDelta t}\bigl [ 4 \bigl \{ \eta ^{n-1} - \eta ^{n-1} \circ X_1(u^{(n-1)*},\varDelta t) \bigr \} \\&\qquad \qquad \qquad - \bigl \{ \eta ^{n-2} - \eta ^{n-2} \circ X_1(u^{(n-1)*},2\varDelta t) \bigr \} \bigr ] \\&\quad + \frac{1}{2\varDelta t}\bigl [ 4\bigl \{ \eta ^{n-1}\circ X_1(u^{(n-1)*},\varDelta t) - \eta ^{n-1} \circ X_1(u_h^{(n-1)*},\varDelta t) \bigr \} \\&\qquad \qquad - \bigl \{ \eta ^{n-2}\circ X_1(u^{(n-1)*},2\varDelta t) - \eta ^{n-2} \circ X_1(u_h^{(n-1)*},2\varDelta t) \bigr \} \bigr ] \\&\equiv R_{h31}^n + R_{h32}^n + R_{h33}^n. \end{aligned}$$

We have, by virtue of (18.20b),

$$\begin{aligned} \Vert R_{h31}^n \Vert _{V_h^\prime }&\leqslant \Vert \overline{D}_{\varDelta t}^{(2)}\eta ^n\Vert _0 \leqslant \frac{3}{2} \Vert \overline{D}_{\varDelta t}\eta ^n \Vert _0 + \frac{1}{2} \Vert \overline{D}_{\varDelta t}\eta ^{n-1} \Vert _0 \nonumber \\&\leqslant \frac{3}{2\sqrt{\varDelta t}} \Bigl \Vert \frac{\partial {\eta }}{\partial {t}} \Bigr \Vert _{L^2(t^{n-1},t^n; L^2)} + \frac{1}{2\sqrt{\varDelta t}} \Bigl \Vert \frac{\partial {\eta }}{\partial {t}} \Bigr \Vert _{L^2(t^{n-2},t^{n-1}; L^2)} \nonumber \\&\leqslant \frac{c\alpha _{32} h^2}{\sqrt{\varDelta t}} \Vert (u,p) \Vert _{H^1(t^{n-2},t^n; H^2\times H^1)} \leqslant \frac{c h^2}{\sqrt{\varDelta t}} \Vert (u,p) \Vert _{H^1(t^{n-2},t^n; H^2\times H^1)}, \end{aligned}$$
(18.55a)
$$\begin{aligned} \Vert R_{h32}^n \Vert _{V_h^\prime }&\leqslant \alpha _{41} \Vert u^{(n-1)*}\Vert _{1,\infty } (2 \Vert \eta ^{n-1} \Vert _0 + \Vert \eta ^{n-2} \Vert _0) \nonumber \\&\leqslant \alpha _{41} \Vert u^{(n-1)*}\Vert _{1,\infty } 3 \alpha _{32} h^2 \Vert (u,p) \Vert _{C(H^2\times H^1)} \leqslant c_{(u,p)} h^2, \end{aligned}$$
(18.55b)
$$\begin{aligned} \Vert R_{h33}^n \Vert _{V_h^\prime }&= \sup _{v_h \in V_h} \frac{1}{\Vert v_h\Vert _1} \frac{1}{2\varDelta t}\Bigl \{ 4\Bigl ( \eta ^{n-1}\circ X_1(u^{(n-1)*}_h,\varDelta t) - \eta ^{n-1} \circ X_1(u^{(n-1)*},\varDelta t), v_h \Bigr ) \nonumber \\&\qquad \qquad \qquad - \Bigl ( \eta ^{n-2}\circ X_1(u^{(n-1)*}_h,2\varDelta t) - \eta ^{n-2} \circ X_1(u^{(n-1)*},2\varDelta t), v_h \Bigr ) \Bigr \} \nonumber \\&\leqslant \sup _{v_h \in V_h} \frac{1}{\Vert v_h\Vert _1} \frac{1}{2\varDelta t} \bigl ( 4 \Vert \eta ^{n-1}\circ X_1(u^{(n-1)*}_h,\varDelta t) - \eta ^{n-1} \circ X_1(u^{(n-1)*},\varDelta t) \Vert _{0,1} \nonumber \\&\qquad \quad + \Vert \eta ^{n-2}\circ X_1(u^{(n-1)*}_h,2\varDelta t) - \eta ^{n-2} \circ X_1(u^{(n-1)*},2\varDelta t) \Vert _{0,1} \bigr ) \Vert v_h\Vert _{0,\infty } \nonumber \\&\leqslant 2 \alpha _{43} \Vert u_h^{(n-1)*} - u^{(n-1)*} \Vert _0 (\Vert \eta ^{n-1} \Vert _1+\Vert \eta ^{n-2} \Vert _1) \alpha _{21} h^{-d/6} \end{aligned}$$
(18.55c)
$$\begin{aligned}&\leqslant c h^{-d/6} ( \Vert \eta ^{n-1} \Vert _1 + \Vert \eta ^{n-2} \Vert _1 ) ( \Vert e_h^{n-1}\Vert _0 + \Vert e_h^{n-2}\Vert _0 + \Vert \eta ^{n-1}\Vert _0 + \Vert \eta ^{n-2}\Vert _0 ) \nonumber \\&\leqslant c^\prime \alpha _{32} h^{1-d/6} \Vert (u,p) \Vert _{C(H^2\times H^1)} \bigl ( \Vert e_h^{n-1}\Vert _0 + \Vert e_h^{n-2}\Vert _0 + \alpha _{32} h^2 \Vert (u,p)\Vert _{C(H^2\times H^1)} \bigr ) \nonumber \\&\leqslant c_{(u,p)} \bigl ( \Vert e_h^{n-1}\Vert _0 + \Vert e_h^{n-2}\Vert _0 + h^2 \bigr ). \end{aligned}$$
(18.55d)

From (18.55a), (18.55b) and (18.55d) we obtain (18.44b).

For (18.44c) we use the bound on \(R_{h3}^n\). \(R_{h4}^n\) is obtained by replacing \(\eta ^{n-1}\) with \(-e_h^{n-1}\) in \(R_{h32}^n + R_{h33}^n\). Hence, from (18.55b) and (18.55c) we have

$$\begin{aligned} \Vert R_{h4}^n \Vert _{V_h^\prime }&\leqslant \alpha _{41} \Vert u^{(n-1)*}\Vert _{1,\infty } (2 \Vert e_h^{n-1} \Vert _0 + \Vert e_h^{n-2} \Vert _0) \\&\quad + 2 \alpha _{21} \alpha _{43} h^{-d/6} \Vert u_h^{(n-1)*} - u^{(n-1)*} \Vert _0 (\Vert e_h^{n-1} \Vert _1+\Vert e_h^{n-2} \Vert _1) \\&\leqslant c\bigl \{ \Vert u^{(n-1)*}\Vert _{1,\infty } (\Vert e_h^{n-1}\Vert _0+\Vert e_h^{n-2}\Vert _0) + h^{-d/6} (\Vert e_h^{n-1} \Vert _1+\Vert e_h^{n-2} \Vert _1) \\&\qquad \times ( \Vert e_h^{n-1}\Vert _0 + \Vert e_h^{n-2}\Vert _0 + \alpha _{32}h^2 \Vert (u,p)\Vert _{C(H^2\times H^1)} ) \bigr \} \\&\leqslant c_{(u,p)} \bigl \{ 1+h^{-d/6} ( \Vert e_h^{n-1} \Vert _1 + \Vert e_h^{n-2} \Vert _1 ) \bigr \} \bigl ( \Vert e_h^{n-1}\Vert _0 + \Vert e_h^{n-2}\Vert _0 + h^2 \bigr ), \end{aligned}$$

which implies (18.44c).   \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this paper

Cite this paper

Notsu, H., Tabata, M. (2016). Error Estimates of a Stabilized Lagrange–Galerkin Scheme of Second-Order in Time for the Navier–Stokes Equations. In: Shibata, Y., Suzuki, Y. (eds) Mathematical Fluid Dynamics, Present and Future. Springer Proceedings in Mathematics & Statistics, vol 183. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56457-7_18

Download citation

Publish with us

Policies and ethics