Skip to main content

Enstrophy Variations in the Incompressible 2D Euler Flows and \(\alpha \) Point Vortex System

  • Conference paper
  • First Online:
Mathematical Fluid Dynamics, Present and Future

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 183))

Abstract

The dissipation of the enstrophy, which is the \(L^2\) norm of the vorticity, in the zero-viscous limit gives rise to the emergence of inertial range in the ensemble average of the energy density spectrum in 2D fluid turbulence. However, it is mathematically known that not only smooth solutions but also weak solutions in \(L^p(\mathbb {R}^2)\), \(p>2\) to the 2D Euler equations never dissipates the enstrophy [7]. This indicates that weak solutions for initial vorticity distributions belonging to weaker function spaces such as the space of Radon measure on \(\mathbb {R}^2\) should be constructed to obtain such singular solutions with the enstrophy dissipation, but no existence result in this function space has not yet been established. We here consider the 2D Euler-\(\alpha \) equations, which is a dispersive regularization of the Euler equations with a scaling parameter \(\alpha \), for the initial vorticity distributions whose support consists of a set of N points, called \(\alpha \)-point vortices. We shall construct singular weak solutions to the Euler equations from those of the evolution equations of the \(\alpha \) point vortices by taking their \(\alpha \rightarrow 0\) limit. We then numerically demonstrate that the self-similar collapse of the \(\alpha \) point vortices gives rise to the anomalous enstrophy dissipation in the distributional sense and it is a robust mechanism of the enstrophy dissipation observed for a wide range of initial configurations of \(\alpha \) point vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batchelor, G.K.: Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids Supppl. II(12), 233–239 (1969)

    MATH  Google Scholar 

  2. Buckmaster, T., De Lellis, C., Székelyhidi Jr., L.: Dissipative Euler flows with Onsager-critical spatioal regularity. arXiv:1404.6915 (2014)

  3. Constantin, P.: E, W. and Titi, E. S.: Onsager’s Conjecture on the Energy Conservation for Solutions of Euler’s Equation. Comm. Math. Phys. 165, 207–209 (1994)

    Article  MathSciNet  Google Scholar 

  4. Delrort, J.-M.: Existence de nappe de tourbillion en dimension deux. J. Am. Math. Soc. 4, 553–586 (1991)

    Article  Google Scholar 

  5. Diperna, R.J., Majda, A.J.: Concentrations in regularizations for 2-D incompressible flow. Comm. Pure Appl. Math. 40, 301–345 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity. 13, 249–255 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eyink, G.L.: Dissipation in turbulence solutions of 2D Euler equations. Nonlinearity. 14, 787–802 (2001)

    Google Scholar 

  8. Giga, Y., Miyakawa, T., Osada, H.: Two-dimensional Navier-Stokes flow with measures as initial vorticity and Morrey spaces. Arch. Rat. Mech. Anal. 104, 223–250 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Holm, D.D., Marsden, J.E., Ratiu, T.S.: Euler-Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 80, 4173–4176 (1998)

    Article  Google Scholar 

  10. Holm, D.D.: Variational principles for Lagrangian-averaged fluid dynamics. J. Phys. A 35, 679–688 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K., Uno, A.: Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15, L21–L24 (2003)

    Article  MATH  Google Scholar 

  12. Kimura, Y.: Similarity solution of two-dimensional point vortices. J. Phys. Soc. Jpn. 56, 2024–2030 (1987)

    Google Scholar 

  13. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30, 301–305 (1941) [reprinted in Proc. R. Soc. Lond. A 434, 9–13 (1991).]

    Google Scholar 

  14. Kolmogorov, A.N.: A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82–85 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys. Fluids. 10, 1417–1423 (1967)

    Article  Google Scholar 

  16. Kudela, H.: Collapse of \(n\)-point vortices in self-similar motion. Fluid Dyn. Res. 46, 031414 (2014). doi:10.1088/0169-5983/46/3/031414

    Article  MathSciNet  MATH  Google Scholar 

  17. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  18. Leith, C.E.: Diffusion approximation for two-dimensional turbulence. Phys. Fluids. 11, 671–672 (1968)

    Google Scholar 

  19. Linshiz, J.S., Titi, E.S.: On the convergence rate of the Euler-\(\alpha \), an inviscid second-grade complex fluid, model to the Euler equations. J. Stat. Phys. 138, 305–332 (2010). doi:10.1007/s10955-009-9916-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Lunasin, E., Kurien, S., Taylor, M.A., Titi, E.S.: A study of the Navier-Stokes-\(\alpha \) model for two-dimensional turbulence. J. Turbul. 8, 1–21 (2007). doi:10.1080/14685240701439403

    Article  MathSciNet  MATH  Google Scholar 

  21. Majda, A.J.: Remarks on weak solutions for vortex sheets with a distinguished sign. Indiana Univ. Math. J. 42, 921–939 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Applied Mathematical Sciences, vol. 96. Springer, New York (1994)

    Google Scholar 

  23. Newton, P.K.: The \(N\)-vortex Problem. Analytical Techniques. Springer, New York (2001)

    Book  MATH  Google Scholar 

  24. Novikov, E.A.: Dynamics and statistic of a system of vortices. Sov. Phys. JETP. 41, 937–943 (1976)

    Google Scholar 

  25. Oliver, M., Shkoller, S.: The vortex blob method as a second-grade non-Newtonian fluid. Comm. Partial Differ. Equ. 26, 295–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Onsager, L.: Statistical hydrodynamics. Nouvo Cimento Suppl. 6, 287–297 (1949)

    MathSciNet  Google Scholar 

  27. Sakajo, T.: Instantaneous energy and enstrophy variations in Euler-alpha point vortices via triple collapse. J. Fluid Mech. 702, 188–214 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sakajo, T.: Anomalous enstrophy dissipation via the self-similar triple collapse of the Euler-\(\alpha \) point vortices. In: Chen, H., et al. (eds.) Emerging Topics on Differential Equations and Their Applications. Nankai Series in Pure, Applied Mathematics and Theoretical Physics, vol. 10, pp. 155–169 (2013)

    Google Scholar 

  29. Yudovich, V.I.: Nonstationary motion of an ideal incompressible liquied. USSR Comput. Math. Phys. 3, 1407–1456 (1963)

    Article  Google Scholar 

  30. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Merchant Books (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sakajo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this paper

Cite this paper

Gotoda, T., Sakajo, T. (2016). Enstrophy Variations in the Incompressible 2D Euler Flows and \(\alpha \) Point Vortex System. In: Shibata, Y., Suzuki, Y. (eds) Mathematical Fluid Dynamics, Present and Future. Springer Proceedings in Mathematics & Statistics, vol 183. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56457-7_14

Download citation

Publish with us

Policies and ethics