Skip to main content

The CAZy Database/the Carbohydrate-Active Enzyme (CAZy) Database: Principles and Usage Guidelines

  • Chapter
  • First Online:
A Practical Guide to Using Glycomics Databases

Abstract

Carbohydrate-Active enZymes (CAZymes) assemble, breakdown, and modify glycans and glycoconjugates using their catalytic and binding modules (functional protein domains). The CAZy database offers since 1998 an online and continuously updated classification of CAZyme modules (Lombard et al. 2014). Each module family in the CAZy classification has been created based on experimentally characterized protein modules from the literature, and the families are populated by related module sequences from public protein sequence databases. Since no universal threshold allows the systematic classification of the various CAZyme families, CAZy annotations result from an expert combination of module modeling/calibration and human curation. CAZy annotations are made publicly available for all proteins released by GenBank (Benson et al. 2012), Swiss-Prot (Boutet et al. 2016) and the Protein Data Bank (PDB; http://www.rcsb.org; (Berman et al. 2000)). Further, functional and 3-D structural information, curated from the literature on a regular basis, constitute essential added values to the CAZy annotation. In this spirit, the display of ligand information from crystallographic complexes has been recently developed (Lombard et al. 2014). This chapter will guide the reader through the usage of CAZy to search enzyme annotations. It will also answer frequent questions such as (i) how to obtain CAZy annotations for a specific protein, a genome, or a metagenome, (ii) how to have a newly characterized family included in the CAZy classification scheme, (iii) why CAZy does not cover all protein families related to glycans/glycoconjugates, and (iv) why CAZy does not transfer functional annotation to similar sequences. Finally, we present here a recent CAZy-associated tool, namely, the Polysaccharide Utilization Loci (PUL) predictor and database in Bacteroidetes species (Terrapon et al. 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B (2012) Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 12(1):186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2012) GenBank. Nucleic Acids Res:gks1195

    Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boraston A, Bolam D, Gilbert H, Davies G (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, Poux S, Bougueleret L, Xenarios I (2016) UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: how to use the entry view. Plant Bioinf Methods Protocols:23–54

    Google Scholar 

  • Campbell JA, Davies GJ, Bulone V, Henrissat B (1997) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326(Pt 3):929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho P (1999) Carbohydrate-active enzymes: an integrated database approach. In Recent advances in carbohydrate bioengineering

    Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328(2):307–317

    Article  CAS  PubMed  Google Scholar 

  • Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O, Klinter S, Pudlo NA, Urs K, Koropatkin NM, Creagh AL, Haynes CA, Kelly AG, Cederholm SN, Davies GJ, Martens EC, Brumer H (2014) A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506(7489):498–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6(1):41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho P, Henrissat B (2010) A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 432:437–444

    Article  CAS  PubMed  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42 (Database issue):D490–D495

    Google Scholar 

  • Lütteke T, Von Der Lieth CW (2004) pdb-care (PDB carbohydrate residue check): a program to support annotation of complex carbohydrate structures in PDB files. BMC Bioinf 5(1):69

    Article  Google Scholar 

  • Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P (2012) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40(D1):D115–D122

    Article  CAS  PubMed  Google Scholar 

  • Mewis K, Lenfant N, Lombard V, Henrissat B (2016) Dividing the large glycoside hydrolase family 43 into subfamilies: a motivation for detailed enzyme characterization. Appl Environ Microbiol AEM. 03453–03415

    Google Scholar 

  • Shipman JA, Berleman JE, Salyers AA (2000) Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron. J Bacteriol 182(19):5365–5372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH (2009) JBrowse: a next-generation genome browser. Genome Res 19(9):1630–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St John FJ, González JM, Pozharski E (2010) Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups. FEBS Lett 584(21):4435–4441

    Article  CAS  PubMed  Google Scholar 

  • Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19(12):555–562

    Article  CAS  PubMed  Google Scholar 

  • Terrapon N, Henrissat B (2014) How do gut microbes break down dietary fiber? Trends Biochem Sci 39(4):156–158

    Article  CAS  PubMed  Google Scholar 

  • Terrapon N, Lombard V, Gilbert HJ, Henrissat B (2015) Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics 31(5):647–655

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Henrissat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Terrapon, N., Lombard, V., Drula, E., Coutinho, P.M., Henrissat, B. (2017). The CAZy Database/the Carbohydrate-Active Enzyme (CAZy) Database: Principles and Usage Guidelines. In: Aoki-Kinoshita, K. (eds) A Practical Guide to Using Glycomics Databases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56454-6_6

Download citation

Publish with us

Policies and ethics