Skip to main content

Emerging Issues on Contamination and Adverse Effects by Alternative Antifouling Paints in the Marine Environments

  • Chapter
  • First Online:
Biological Effects by Organotins

Abstract

The current status of antifouling biocides contaminations was reviewed in water, sediment, and biological samples, and the effect of antifouling biocides for aquatic organisms was evaluated.

Irgarol 1051 (3-methylthio-4-tetrabutylamino-6-cyclopropylamino-s-triazine), diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea), sea nine 211 (2-n-octyl-4,5-dichloro-2-methyl-4-isothiazolin-3-one), chlorothalonil (2,4,5,6-tetrachloro-isophthalonitrile), dichrofluanid (N′-dimethyl-N-phenylsulphamide), metal pyrithions (metal complex of 2-mercaptopyridine-1-oxide), and PTPB (pyridine triphenylborane) in water were in the range of 0.5–2,430 ng/l, <0.7–6,742 ng/l, <0.3–3,700 ng/l, <1–1,380 ng/l, <1–55 ng/l, <80 ng/l, and 0.0036–0.021 ng/l, respectively. The concentrations of Irgarol 1051, diuron, sea nine 211, chlorothalonil, dichrofluanid, and pythiones in sediment were in the range of <0.02–816 μg/kg dry, <0.02–1,350 μg/kg dry, <0.04–150 μg/kg dry, <0.01–46.5 μg/kg dry, <0.1–688.2 μg/kg dry, <8–420 μg/kg dry, respectively. Irgarol 1051 was detected in the range of <0.1–35 μg/kg in clam, mussel, and oyster from Vietnam, Thailand, and Japan. The concentrations of diuron and sea nine 211 in bivalves were <0.1–9.6 μg/kg and <0.1–0.3 μg/kg, respectively.

EC50 and LC50 of Irgarol 1051 were in the range of 0.09–50,800 μg/l and 0.38 to >40,000 μg/l, respectively. EC50 of sea nine 211 were in the range of 0.42–12 μg/l. EC50 and LC50 of diuron were in the range of 4.3–43,000 μg/l and 5.9 to >127,000 μg/l, respectively. EC50 and LC50 of chlorothalonile were in the range of 4.4–390 μg/l and 12–110 μg/l, respectively. EC50 of dichlofluanid was in the range of 87–1,050 μg/l. EC50 of tolylfluanid was in the range of 9.9–405 μg/l. EC50 and LC50 of PTPB were in the range of 2.2–140 μg/l and 54 μg/l, respectively. EC50 of TCMTB ((2-thiocyanomethylthio) benzothiazole) was in the range of 46–433 μg/l.

Judging from toxicity data, most of these alternative biocides concentrations which were detected in the aquatic environment were below the level that causes an adverse effect in aquatic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albanis TA, Lambropoulou DA, Sakkas VA, Konstantinous IK (2002) Antifouling paint booster biocide contamination in Greek marine sediment. Chemosphere 48:475–485

    Article  CAS  Google Scholar 

  • Ali HR, Arifin MM, Sheikh MA, Shazilli NAM, Bachok Z (2013) Occurrence and distribution of antifouling biocide irgarol-1051 in coastal waters of Peninsular Malaysia. Mar Pollut Bull 70:253–257

    Article  CAS  Google Scholar 

  • Bao VWW, Leung KMY, Qiu JW, Lam MHW (2011) Acute toxicity of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar Pollut Bull 62:1147–1151

    Article  CAS  Google Scholar 

  • Bellas J (2006) Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates. Sci Total Environ 367:573–585

    Article  CAS  Google Scholar 

  • Biselli S, Bester K, Huhnerfuss H, Fent K (2000) Concentrations of the antifouling compound Irgarol 1051 and of organotins in water and sediments of German North and Baltic Sea marine. Mar Pollut Bull 40:233–243

    Article  CAS  Google Scholar 

  • Bowman JC, Readman JW, Zhou JL (2003) Seasonal variability in the concentrations of Irgarol 1051 in Brighton Marina, UK; including the impact of dredging. Mar Pollut Bull 46:444–451

    Article  CAS  Google Scholar 

  • Boxall ABA, Comber SD, Conrad AU, Howcroft J, Zaman N (2000) Inputs, monitoring and fate modelling of antifouling biocides in UK estuaries. Mar Pollut Bull 40:898–905

    Article  CAS  Google Scholar 

  • Bryan GW, Gibbs PE, Hummerstone LG, Burt GW (1986) The decline of the gastropod Nucella lapillus around south-west England: evidence for the effect of tributyltin from antifouling paint. J Mar Biol Assoc UK 66:615–640

    Google Scholar 

  • Comber SDW, Gardner MJ, Boxall ABA (2002) Survey of four marine antifoulant constituents (copper, zinc, diuron and Irgarol 1051) in two UK estuaries. J Environ Monit 4:417–425

    Article  CAS  Google Scholar 

  • Connelly DP, Readman JW, Knap AH, Davies J (2001) Contamination of the coastal waters of Bermuda by organotins and the triazine herbicide Irgarol 1051. Mar Pollut Bull 42:409–414

    Article  CAS  Google Scholar 

  • Eguchi S, Harino H, Yamamoto Y (2010) Assessment of antifouling biocides contaminants in Maizuru Bay, Japan. Arch Environ Contam Toxicol 58:684–693

    Article  CAS  Google Scholar 

  • Fernandez-Alba AR, Hernando MD, Piedra L, Chisti Y (2002) Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal Chim Acta 456:303–312

    Article  CAS  Google Scholar 

  • Ferrer I, Barcelo D (2001) Identification of a new degradation product of the antifouling agent Irgarol 1051 in natural samples. J Chromatogr A 926:221–228

    Article  CAS  Google Scholar 

  • Gatidou G, Thomaidis NS (2007) Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays. Aquat Toxicol 85:184–191

    Article  CAS  Google Scholar 

  • Gibbs PE, Pascoe PL, Burt GR (1988) Sex change in the female dog-whelk, Nucella lapillus, induced by tributyltin from antifouling paints. J Mar Biol Assoc UK 68:715–731

    Article  Google Scholar 

  • Gough MA, Fothergill G, Hendrie JD (1994) Survey of southern England coastal waters for the s-triazine antifouling compound Irgarol 1051. Mar Pollut Bull 28:613–620

    Article  CAS  Google Scholar 

  • Harino H, Fukushima M, Yamamoto Y, Kawai S, Miyazaki N (1998a) Organotin compounds in water, sediment, and biological samples from the Port of Osaka, Japan. Arch Environ Contam Toxicol 35:558–564

    Article  CAS  Google Scholar 

  • Harino H, Fukushima M, Kawai S, Megumi K (1998b) Measurement of butyltin contamination of water and sediment in Osaka Bay, Japan. Appl Organomet Chem 12:819–825

    Article  CAS  Google Scholar 

  • Harino H, Fukushima M, Kawai S (1999) Temporal trends of organotin compounds in the aquatic environment of the Port of Osaka, Japan. Environ Pollut 105:1–7

    Article  CAS  Google Scholar 

  • Harino H, O’Hara SCM, Burt GR, Chesman BS, Pope ND, Langston WJ (2002) Butyltin and phenyltin compounds in eels (Anguilla anguilla). J Mar Biol Assoc UK 82:893–901

    Article  CAS  Google Scholar 

  • Harino H, O’Hara SCM, Burt GR, Chesman BS, Pope ND, Langston WJ (2003) Organotin compounds in Mersey and Thames estuaries a decade after UK TBT legislation. J Mar Biol Assoc UK 83:11–22

    CAS  Google Scholar 

  • Harino H, Mori Y, Yamaguchi Y, Shibata K, Senda T (2004) Monitoring of antifouling booster biocides in water and sediment from the port of Osaka, Japan. Arch Environ Contam Toxicol 48:303–310

    Article  Google Scholar 

  • Harino H, Midorikawa S, Arai T, Ohji M, Cu ND, Miyazaki N (2006a) Concentrations of booster biocides in sediment and clams from Vietnam. J Mar Biol Assoc UK 86:1–8

    Article  Google Scholar 

  • Harino H, Ohji M, Wattayakorn G, Arai T, Rungsupa S, Miyazaki N (2006b) Occurrence of antifouling biocides in sediment and green mussels from Thailand. Arch Environ Contam Toxicol 51:400–407

    Article  CAS  Google Scholar 

  • Harino H, Ohji M, Wattayakorn G, Adulyanukosol K, Arai T, Miyazaki N (2007a) Accumulation of organotin compounds in tissues and organs of stranded whales along the coasts of Thailand. Arch Environ Contam Toxicol 53:119–125

    Article  CAS  Google Scholar 

  • Harino H, Yamamoto Y, Eguchi S, Kawai S, Kurokawa Y, Arai T, Ohji M, Okamura H, Miyazaki N (2007b) Concentrations of antifouling biocides in sediment and mussel samples collected from Otsuchi Bay, Japan. Arch Environ Contam Toxicol 52:179–188

    Article  CAS  Google Scholar 

  • Harino H, Iwasaki N, Arai T, Ohji M, Miyazaki N (2009a) Occurrence of antifouling biocides and fluorinated alkyl compounds in sediment core from deep sea: Suruga Bay, Tosa Bay, and Nankai Trough, Japan. Arch Environ Contam Toxicol 57:661–669

    Article  CAS  Google Scholar 

  • Harino H, Arai T, Ohji M, Ismail AB, Miyazaki N (2009b) Contamination profiles of antifouling biocides in selected coastal regions of Malaysia. Arch Environ Contam Toxicol 56:468–478

    Article  CAS  Google Scholar 

  • Harino H, Eguchi S, Yamamoto Y (2010) Concentrations of antifouling biocides in mussel and oyster from Awaji Island, Japan. Kobe Coll Stud 57:12–23 (in Japanese)

    Google Scholar 

  • Konemann H (1981) Fish toxicity tests with mixtures of more than two chemicals: a proposal for a quantitative approach and experimental results. Toxicology 19:229–238

    Article  CAS  Google Scholar 

  • Koutsaftis A, Aoyama I (2007) Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina. Sci Total Environ 387:166–174

    Article  CAS  Google Scholar 

  • Lambert SJ, Thomas KV, Davy AJ (2006) Assessment of the risk posed by the antifouling booster biocides Irgaron 1051 and diuron to freshwater macrophytes. Chemosphere 63:734–743

    Article  CAS  Google Scholar 

  • Liu D, Pacepavicius GJ, Maguire RJ, Lau YL, Okamura H, Aoyama I (1999) Survey for the occurrence of the new antifouling compound Irgarol 1051 in the aquatic environment. Water Res 33:2833–2843

    Article  CAS  Google Scholar 

  • Martinez K, Ferrer I, Hernando MD, Fernandez-Alba AR, Marce RM, Borrull F, Barcelo D (2001) Occurrence of antifouling biocides in the Spanish Mediterranean marine environment. Environ Technol 22:543–552

    Article  CAS  Google Scholar 

  • Midorikawa S, Arai T, Harino H, Ohji M, Duc CN, Miyazaki N (2004) Concentrations of organotin compounds in sediment and clams collected from coastal area in Vietnam. Environ Pollut 131:401–408

    Article  CAS  Google Scholar 

  • Mochida K, Ito K, Harino H, Kakuno A, Fujii K (2006) Acute toxicity of pyrithione antifouling biocides and joint toxicity with copper to red sea bream (Pagrus major) and toy shrimp (Heptacarpus futilirostris). Environ Toxicol Chem 25:3058–3064

    Article  Google Scholar 

  • Mochida K, Onduka T, Amano H, Ito M, Tanaka H, Fijii K (2012) Use of species sensitivity distributions to predict no-effect concentrations of an antifouling biocide, pyridine triphenylborane, for marine organisms. Mar Pollut Bull 64:2807–2814

    Article  CAS  Google Scholar 

  • Mohr S, Schroder H, Feibiche M, Berghahn R, Arp W, Nicklisch A (2008) Long-term effects of the antifouling booster biocide Irgarol 1051 on periphyton, plankton and ecosystem function in freshwater pond mesocosms. Aquat Toxicol 90:109–120

    Article  CAS  Google Scholar 

  • Myers JH, Gunthorpe L, Allinson G, Duda S (2006) Effects of antifouling biocides to the germination and growth of the marine macroalga, Hormosira banksii (Turner) Desicaine. Mar Pollut Bull 52:1048–1055

    Article  CAS  Google Scholar 

  • Okamura H, Aoyama I, Liu D, Maguire RJ, Pacepavicius GJ, Lau YL (2000a) Fate and ecotoxicity of the new antifouling compound Irgarol 1051 in the aquatic environment. Water Res 34:3523–3530

    Article  CAS  Google Scholar 

  • Okamura H, Aoyama I, Takami T, Maruyama T, Suzuki Y, Matsumoto M, Katsuyama I, Hamada J, Beppu T, Tanaka O, Maguire RJ, Liu D, Lau L, Pacepavicius J (2000b) Phytotoxicity of the new antifouling compound Irgarol 1051 and a major degradation product. Mar Pollut Bull 40:754–763

    Article  CAS  Google Scholar 

  • Okamura H, Watanabe T, Aoyama I, Hasobe M (2002) Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere 46:945–951

    Article  CAS  Google Scholar 

  • Okamura H, Kitano S, Toyota S, Harino H, Thomas KV (2009) Ecotoxicology of the degradation products in triphenylborane pyridine (TPBP) antifouling agent. Chemosphere 74:1275–1278

    Article  CAS  Google Scholar 

  • Onzuka T, Mochida K, Harino H, Ito K, Kakuno A, Fujii K (2010) Toxicology of metal pyrithione photodegradation products to marine organisms with indirect evidence for their presence in sea. Arch Environ Contam Toxicol 58:991–997

    Article  Google Scholar 

  • Readman JW, Kwong LLW, Grondin D, Bartocci J, Vileneuve JP, Mee LD (1993) Coastal water contamination from a triazine herbicide used in antifouling paints. Environ Sci Technol 27:1940–1942

    Article  CAS  Google Scholar 

  • Sakkas VA, Konstantinou IK, Lambropoulou DA, Albanis TA (2002) Survey for the occurrence of antifouling paint booster biocides in the aquatic environment of Greece. Environ Sci Pollut Res 9:327–332

    Article  CAS  Google Scholar 

  • Sapozhnikova Y, Wirth E, Schiff K, Fulton M (2013) Antifouling biocides in water and sediments from California marinas. Mar Pollut Bull 69:189–194

    Article  CAS  Google Scholar 

  • Sargent CJ, Bowman JC, Zhou JL (2000) Levels of antifoulant Irgarol 1051 in the Conway Marina, North Wales. Chemosphere 41:1755–1760

    Article  CAS  Google Scholar 

  • Scarlett A, Donkin ME, Fileman TW, Donkin P (1997) Occurrence of the marine antifouling agent Irgarol 1051 within the Plymouth Sound locality: implications for the green macroalga Enteromorphoa intestinalis. Mar Pollut Bull 34:645–651

    Article  CAS  Google Scholar 

  • Scarlett A, Donkin P, Fileman TW, Morris RJ (1999) Occurrence of the antifouling herbicide, Irgarol 1051, within coastal-water seagrasses from Queensland, Australia. Mar Pollut Bull 38:687–691

    Article  CAS  Google Scholar 

  • Tanabe S, Prudente M, Mizuno T, Hasegawa J, Iwata H, Miyazaki N (1998) Butyltin contamination in marine mammals from North Pacific and Asian coastal waters. Environ Sci Technol 32:193–198

    Article  CAS  Google Scholar 

  • Thomas KV, Blake S, Waldock M (2000) Anifouling paint booster biocide contamination in UK marine sediment. Mar Pollut Bull 40:739–745

    Article  CAS  Google Scholar 

  • Thomas K, Fileman TW, Readman JW, Waldock MJ (2001) Antifouling paint booster biocides in the UK coastal environment and potential risks of biological effects. Mar Pollut Bull 42:677–688

    Article  CAS  Google Scholar 

  • Thomas K, McHugh M, Waldock M (2002) Antifouling paint booster biocides in UK coastal waters: inputs, occurrence and environmental fate. Sci Total Environ 293:117–127

    Article  CAS  Google Scholar 

  • Tolosa I, Readman JW, Blaevoet A, Ghilini S, Bartocci J, Horvat M (1996) Contamination of Mediterranean (Cote d’Azur) coastal waters by organotins and Irgarol 1051 used in antifouling paints. Mar Pollut Bull 32:335–341

    Article  CAS  Google Scholar 

  • Toth S, Slooten KB, Spack L, de Alencastro LF, Tarradellas J (1996) Irgarol 1051, an antifouling compound in freshwater, sediment, and biota of Lake Geneva. Bull Environ Contam Toxicol 57:426–433

    Article  CAS  Google Scholar 

  • Verslyche T, Vangheluwe M, Heijerick D, De Schamphelaere K, Van Sprang P, Janssen CR (2003) The toxicity of metal mixtures to the estuarine mysid Neomysis integer (Crustacea: Mysidacea) under changing salinity. Aquat Toxicol 64:307–315

    Article  Google Scholar 

  • Voulvoulis N, Scrimshaw MD, Lester JN (2000) Occurrence of four biocides utilized in antifouling paints, as alternatives to organotin compounds, in waters and sediments of a commercial estuary in the UK. Mar Pollut Bull 40:938–946

    Article  CAS  Google Scholar 

  • Waldock MJ, Thain JE (1983) Shell thickening in Crassostrea gigas: organotin antifouling or sediment induced? Mar Pollut Bull 14:411–415

    Article  CAS  Google Scholar 

  • Zhou JL (2008) Occurrence and persistence of antifouling biocide Irgarol 1051 and its main metabolite in the coastal waters of Southern England. Sci Total Environ 406:239–246

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author expresses sincere thanks to Dr. Madoka Ohji, Tokyo University of Agriculture and Technology, for providing many articles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroya Harino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Harino, H. (2017). Emerging Issues on Contamination and Adverse Effects by Alternative Antifouling Paints in the Marine Environments. In: Horiguchi, T. (eds) Biological Effects by Organotins. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56451-5_3

Download citation

Publish with us

Policies and ethics