Skip to main content

Effects of Organotins in Mollusk’s Lipids

  • Chapter
  • First Online:
Biological Effects by Organotins

Abstract

Organotin compounds have been shown to alter lipid homeostasis and trigger adipocyte differentiation and a predisposition to obesity in vertebrates by binding to nuclear receptors (e.g., the retionid X receptor, RXR). RXR is highly conserved in evolution, and RXR homologues with high ligand affinity for tributyltin and triphenyltin have been cloned from gastropods. Thus, significant alteration of lipids as a consequence of exposure to organotin compounds is likely to occur also in mollusks. This chapter reviews the still fragmentary knowledge on the induction of lipid disturbance and membrane toxicity by organotin compounds and the potential link between those lipid alterations and the occurrence of imposex and/or altered levels of esterified steroids. Finally, the chapter emphasizes the need to characterize the richness of mollusk’s lipids (e.g., cardiolipin, plasmalogens, and many others) with the new available technologies to better understand the toxicity of organotin compounds but also other pollutants/stressors, in this very diverse animal group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad M, Ruiz C, Martínez D, Mosquera G, Sánchez JL (1995) Seasonal variations of lipid classes and fatty acids in flat oyster, Ostrea edulis, from San Cibran (Galicia, Spain). Comp Biochem Physiol 110C:109–118

    CAS  Google Scholar 

  • Benatti P, Peluso G, Nicolai R, Calvani M (2004) Polyunsaturated fatty acids: biochemical, nutritional and epigenetic properties. J Am Coll Nutr 23:281–302

    Article  CAS  Google Scholar 

  • Bergé JP, Barnathan G (2005) Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv Biochem Eng Biotechnol 96:49–125

    Google Scholar 

  • Bernat P, Gajewska E, Szewczyk R, Słaba M, Długoński J (2014) Tributyltin (TBT) induces oxidative stress and modifies lipid profile in the filamentous fungus Cunninghamella elegans. Environ Sci Pollut Res 21:4228–4235

    Article  CAS  Google Scholar 

  • Bonarska-Kujawa D, Kleszczynska H, Przerstalski S (2012) The location of organotins within the erythrocyte membrane in relation to their toxicity. Ecotoxicol Environ Saf 78:232–238

    Article  CAS  Google Scholar 

  • Bouton D, Escriva H, de Mendonça RL, Glineur C, Bertin B, Noël C, Robinson-Rechavi M, de Groot A, Cornette J, Laudet V, Pierce RJ (2005) A conserved retinoid X receptor (RXR) from the mollusk Biomphalaria glabrata transactivates transcription in the presence of retinoids. J Mol Endocrinol 34:567–582

    Article  CAS  Google Scholar 

  • Castro LFC, Lima D, Machado A, Melo C, Hiromori Y, Nishikawa J, Nakanishi T, Reis-Henriques MA, Santos MM (2007) Imposex induction in mediated through the Retinoid X Receptor signalling pathway in the neogastropod Nucella lapillus. Aquat Toxicol 85:57–66

    Article  CAS  Google Scholar 

  • Fiorini R, Pagliarani A, Nesci S, Pirini M, Tucci E, Ventrella V (2012) Structural and functional changes in gill mitochondrial membranes from the Mediterranean mussel Mytilus galloprovincialis exposed to tri-n-butyltin. Environ Toxicol Chem 31:877–884

    Article  CAS  Google Scholar 

  • Gallager SM, Mann R, Sasaki GC (1986) Lipid as an index of growth and viability in three species of bivalve larvae. Aquaculture 56:81–103

    Article  CAS  Google Scholar 

  • Gooding MP, LeBlanc GA (2001) Biotransformation and disposition of testosterone in the eastern mud snail Ilyanassa obsoleta. Gen Comp Endocrinol 122:172–180

    Article  CAS  Google Scholar 

  • Grün F (2014) The obesogen tributyltin. Vitam Horm 94:277–325

    Article  Google Scholar 

  • Grün F, Blumberg B (2009) Minireview: the case for obesogens. Mol Endocrinol 23:1127–1134

    Article  Google Scholar 

  • Grün F, Watanabe H, Zamanian Z, Maeda L, Arima K, Cubacha R, Gardiner DM, Kanno J, Iguchi T, Blumberg B (2006) Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol Endocrinol 20:2141–2155

    Article  Google Scholar 

  • Hochberg RB (1998) Biological esterification of steroids. Endocr Rev 19:331–348

    CAS  Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213

    Article  CAS  Google Scholar 

  • Hulbert AJ, Kelly MA, Abbott SK (2014) Polyunsaturated fats, membrane lipids and animal longevity. J Comp Physiol 184B:149–166

    Article  Google Scholar 

  • Iguchi T, Katsu Y, Horiguchi T, Watanabe H, Blumberg B, Ohta Y (2007) Endocrine disrupting organotin compounds are potent inducers of imposex in gastropods and adipogenesis in vertebrates. Mol Cell Toxicol 3:1–10

    Google Scholar 

  • Inadera H, Shimomura A (2005) Environmental chemical tributyltin augments adipocyte differentiation. Toxicol Lett 159:226–234

    Article  CAS  Google Scholar 

  • Ivanova PT, Milne SB, Myers DS, Brown HA (2009) Lipidomics: a mass spectrometry based systems level analysis of cellular lipids. Curr Opin Chem Biol 13:526–531

    Article  CAS  Google Scholar 

  • Janer G, Mesia-Vela S, Wintermyer ML, Cooper KR, Kauffman FC, Porte C (2004) Esterification of vertebrate-like steroids in the eastern oyster (Crassostrea virginica). Mar Environ Res 28:481–484

    Article  Google Scholar 

  • Janer G, Lavado R, Thibaut R, Porte C (2005) Effects of 17β-estradiol exposure in the mussel Mytilus galloprovincialis: a possible regulating role for steroid acyltransferases. Aquat Toxicol 75:32–42

    Article  CAS  Google Scholar 

  • Janer G, Lyssimachou A, Bachmann J, Oehlmann J, Schulte-Oehlmann U, Porte C (2006) Sexual dimorphism in esterified steroid levels in the gastropod Marisa cornuarietis: the effect of xenoandrogenic compounds. Steroids 71:435–444

    Article  CAS  Google Scholar 

  • Janer G, Navarro JC, Porte C (2007) Exposure to TBT increases accumulation of lipids and alters fatty acid homeostasis in the ramshorn snail Marisa cornuarietis. Comp Biochem Physiol 146C:368–374

    CAS  Google Scholar 

  • Kanayama T, Kobayashi N, Mamiya S, Nakanishi T, Nishikawa J (2005) Organotin compounds promote adipocyte differentiation as agonists of the peroxisome proliferator-activated receptor ã/retinoid X receptor pathway. Mol Pharmacol 67:766–774

    Article  CAS  Google Scholar 

  • Kraffe E, Soudant P, Marty Y (2004) Fatty acid composition of serine, ethanolamine and choline plasmalogens in some marine bivalves. Lipids 39:59–66

    Article  CAS  Google Scholar 

  • Kraffe E, Grall J, Le Duff M, Soudant P, Marty Y (2008) Striking parallel between cardiolipin fatty acid composition and phylogenetic belonging in marine bivalves: a possible adaptative evolution. Lipids 43:961–970

    Article  CAS  Google Scholar 

  • Labadie P, Peck M, Minier C, Hill EM (2007) Identification of the steroid fatty acid ester conjugates formed in vivo in Mytilus edulis as a result of exposure to estrogens. Steroids 72:41–49

    Article  CAS  Google Scholar 

  • Lamaziere A, Wolf C, Barbe U, Bausero P, Visioli F (2013) Lipidomics of hepatic lipogenesis inhibition by omega 3 fatty acids. Prostaglandins Leukot Essent Fat Acids 88:149–154

    Article  CAS  Google Scholar 

  • Lyssimachou A, Bachmann J, Porte C (2008) Short-term exposure to the organotin compound triphenyltin modulates esterified steroid levels in females of Marisa cornuarietis. Aquat Toxicol 89:129–135

    Article  CAS  Google Scholar 

  • Lyssimachou A, Navarro JC, Bachmann J, Porte C (2009) Triphenyltin alters lipid homeostasis in females of the ramshorn snail Marisa cornuarietis. Environ Pollut 157:1714–1720

    Article  CAS  Google Scholar 

  • Masia A, Avery SV, Zoroddu MA, Gadd GM (1998) Enrichment with a polyunsaturated fatty acid enhances the survival of Saccharomyces cerevisiae in the presence of tributyltin. Microbiol Lett 167:321–326

    Article  CAS  Google Scholar 

  • Meador JP, Sommers FC, Cooper KA, Yanagida G (2011) Tributyltin and the obesogen metabolic syndrome in a salmonid. Environ Res 111:50–56

    Article  CAS  Google Scholar 

  • Morais S, Boaventura D, Narciso L, Ré P, Hawkins SJ (2003) Gonad development and fatty acid composition of Patella depressa Pennant (Gastropoda: Prosobranchia) populations with different patterns of spatial distribution, in exposed and sheltered sites. J Exp Mar Biol Ecol 294:61–80

    Article  CAS  Google Scholar 

  • Nishikawa J, Mamiya S, Kanayama T, Nishikawa T, Shiraishi F, Horiguchi T (2004) Involvement of the retinoid X receptor in the development of imposex caused by organotin in gastropods. Environ Sci Technol 38:6271–6276

    Article  CAS  Google Scholar 

  • Ortiz A, Teruel JA, Aranda J (2005) Effect of triorganotin compounds on membrane permeability. Biochim Biophys Acta 1720:137–142

    Article  CAS  Google Scholar 

  • Pazos AJ, Román G, Acosta CP, Sánchez JL, Abad M (1997) Lipid classes and fatty acid composition in the female gonad of Pecten maximus in relation to reproductive cycle and environmental variables. Comp Biochem Physiol 117B:393–402

    Article  CAS  Google Scholar 

  • Puccia E, Messina CM, Cangialosi MV, Agati P, Mansueto C, Pellerito C, Nagy L, Mansueto V, Scopelliti M, Fiore T, Pellerito L (2005) Lipid and fatty acid variations in Ciona intestinalis ovary after tri-n-butyltin(IV)chloride exposure. Appl Organometal Chem 19:23–29

    Article  CAS  Google Scholar 

  • Riu A, McCollum CW, Pinto CL, Grimaldi M, Hillenweck A, Perdu E, Zalko D, Bernard L, Laudet V, Balaguer P, Bondesson M, Gustafsson JA (2014) Halogenated bisphenol-a analogs act as obesogens in zebrafish larvae (Danio rerio). Toxicol Sci 139:48–58

    Article  CAS  Google Scholar 

  • Szanto A, Narkar V, Shen Q, Uray IP, Davies PJA, Nagy L (2004) Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ 11:S126–S143

    Article  CAS  Google Scholar 

  • Thornton JW (2003) Non-mammalian nuclear receptors: evolution and endocrine disruption. Pure Appl Chem 75:1827–1839

    Article  CAS  Google Scholar 

  • Tingaud-Sequeira A, Ouadah N, Babin PJ (2011) Zebrafish obesogenic test: a tool for screening molecules that target adiposity. J Lipid Res 52:1765–1772

    Article  CAS  Google Scholar 

  • Titley-O’Neal CP, Spade DJ, Zhang Y, Kan R, Martyniuk CJ, Denslow ND, MacDonald BA (2013) Gene expression profiling in the ovary of Queen conch (Strombus gigas) exposed to environments with high tributyltin in the British Virgin Islands. Sci Total Environ 449:52–62

    Article  Google Scholar 

  • Vogeler S, Galloway TS, Lyons BP, Bean TP (2014) The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group. BMC Genomics 15:369

    Article  Google Scholar 

  • Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4:594–610

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinta Porte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Fernandes, D., Porte, C. (2017). Effects of Organotins in Mollusk’s Lipids. In: Horiguchi, T. (eds) Biological Effects by Organotins. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56451-5_10

Download citation

Publish with us

Policies and ethics