Skip to main content

Analytical Techniques for Trace Levels of Organotin Compounds in the Marine Environment

  • Chapter
  • First Online:
Biological Effects by Organotins

Abstract

Organotins still remain a major concern for the safety of the marine environment, and their determination is covered under legislation in quite a number of nations. Because their usage is totally banned, the demand for determining organotins at sub-nanogram concentrations is ever increasing, which is achieved by elimination of matrix interferences, reduction of sample volume, and analyte enrichment. Organotin speciation is a complex technique involving a long and laborious sample treatment procedure that is prone to various uncertainties. To overcome the shortfalls in extraction and pre-treatment, newer microextraction techniques were developed with reduction in sample and solvent volume, extraction time, and enrichment procedures. Moreover, the recent techniques are developed with a major focus on green analytical chemistry to reduce the impact of anthropogenic (laboratory) activities on the environment. Decreasing the detection limit of methods without greatly compromising their sensitivity was a profound topic of environmental research for organotin analysis. In the case of analytical technique, from the late 1970s, the usage of titrometric and spectrophotometric methods were substituted with more sensitive and lower-cost detectors at nanogram level. Furthermore, detection at femtogram levels was achieved by a mass spectrometer coupled to either gas chromatography (GC) or liquid chromatography (LC) systems. One of the significant developments in instrumentation is the application of the isotope dilution technique to detect the transformation/degradation of organotin species during extraction analysis steps. This chapter discusses the methods available for measuring organotins and their metabolites in seawater, sediment, and biota such as fish and oysters and compares the performance of the various analytical methods available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abalos M, Bayona J, Compa R, Granados M, Leal C, Prat M (1997) Analytical procedures for the determination of organotin compounds in sediment and biota: a critical review. J Chromatogr A 788:1–49

    Article  CAS  Google Scholar 

  • Aguerre S, Bancon-Montigny C, Lespes G, Potin-Gautier M (2000) Solid-phase microextraction (SPME): a new procedure for the control of butyl- and phenyltin pollution in the environment by GC-FPD. Analyst 125:263–268

    Article  CAS  Google Scholar 

  • Aguerre S, Lespes G, Desauziers V, Potin-Gautier M (2001) Speciation of organotins in environmental samples by SPME-GC: comparison of four specific detectors: FPD, PFPD, MIP-AES and ICP-MS. J Anal At Spectrom 16:263–269

    Article  CAS  Google Scholar 

  • Arambarri I, Garcia R, Millán E (2003) Assessment of tin and butyltin species in estuarine superficial sediments from Gipuzkoa, Spain. Chemosphere 51:643–649

    Article  CAS  Google Scholar 

  • Attar KM (1996) Analytical methods for speciation of organotins in the environment. Appl Organomet Chem 10:317–337

    Article  CAS  Google Scholar 

  • Beceiro E, Guimaraes A, Alpendurada MF (2009) Optimisation of a headspace-solid-phase micro-extraction method for simultaneous determination of organometallic compounds of mercury, lead and tin in water by gas chromatography-tandem mass spectrometry. J Chromatogr A 1216:5563–5569

    Article  Google Scholar 

  • Bekri K, Saint-Louis R, Pelletier E (2006) Determination of tributyltin and 4-hydroxybutyldibutyltin chlorides in seawater by liquid chromatography with atmospheric pressure chemical ionization-mass spectrometry. Anal Chim Acta 578:203–212

    Article  CAS  Google Scholar 

  • Berg M, Arnold ÄDG, Mu SR, Mu RG (2001) Sorption and desorption behavior of organotin compounds in sediment–pore water systems. Environ Sci Technol 35:3151–3157

    Article  CAS  Google Scholar 

  • Binato G, Biancotto G, Piro R, Angeletti R (1998) Atomic absorption spectrometric screening and gas chromatographic-mass spectrometric determination of organotin compounds in marine mussels: an application in samples from the Venetian Lagoon. Fresenius J Anal Chem 361:333–337

    Article  CAS  Google Scholar 

  • Birjandi AP, Bidari A, Rezaei F, Hosseini MRM, Assadi Y (2008) Speciation of butyl and phenyltin compounds using dispersive liquid-liquid microextraction and gas chromatography-flame photometric detection. J Chromatogr A 1193:19–25

    Article  CAS  Google Scholar 

  • Bravo M, Lespes G, De Gregori I, Pinochet H, Gautier MP (2005) Determination of organotin compounds by headspace solid-phase microextraction-gas chromatography-pulsed flame-photometric detection (HS-SPME-GC-PFPD). Anal Bioanal Chem 383:1082–1089

    Article  CAS  Google Scholar 

  • Camino FJ, Zafra-Gómez A, Oliver-Rodríguez B, Ruiz-Naranjo I, Ruiz-García J, Vílchez JL (2012) Validation of a method for the determination of tributyltin in seawater by stir bar sorptive extraction-liquid chromatography tandem mass spectrometry. J Chromatogr A 1263:14–20

    Article  Google Scholar 

  • Campillo N, Aguinaga N, Viñas P, López-García I, Hernández-Córdoba M (2004) Speciation of organotin compounds in waters and marine sediments using purge-and-trap capillary gas chromatography with atomic emission detection. Anal Chim Acta 525:273–280

    Article  CAS  Google Scholar 

  • Cassi R, Tolosa I, Bartocci J, De Mora S (2002) Organotin speciation analyses in marine biota using sodium tetraethylborate ethylation and gas chromatography with flame photometric detection. Appl Organomet Chem 16:355–359

    Article  CAS  Google Scholar 

  • Ceulemans M, Szpunar-Å‚obiÅ„ska J, Dirkx WMR, Å‚obiÅ„ski R, Adams FC (1993) Speciation analysis of organotin in the River Scheldt by capillary gas chromatography atomic emission spectrometry (GC-AES). Int J Environ Anal Chem 52:113–125

    Article  CAS  Google Scholar 

  • Ciesielski T, Wasik A, Kuklik I, Skóra K, NamieÅ›nik J, Szefer P (2004) Organotin compounds in the liver tissue of marine mammals from the Polish coast of the Baltic Sea. Environ Sci Technol 38:1415–1420

    Article  CAS  Google Scholar 

  • Compano R, Grandos M, Leal C, Prat MD (1995) Liquid chromatographic determination of triphenyltin and tributyltin using fluorimetric detection. Anal Chim Acta 314:175–182

    Article  CAS  Google Scholar 

  • Costa MB, Zamprogno GC, Pedruzzi FC, Dalbem GB, Tognella MMP (2013) Assessing the continuous impact of tributyltin from antifouling paints in a Brazilian mangrove area using intersex in Littoraria angulifera (Lamarck, 1822) as biomarker. Int J Oceanogr 2013:1–8

    Article  Google Scholar 

  • Cukrowska E, Chimuka L, Kwaramba V (2004) Application of supported liquid membrane probe for extraction and preconcentration of organotin compounds from environmental water samples. Anal Chim Acta 523:141–147

    Article  CAS  Google Scholar 

  • Devos C, Vliegen M, Willaert B, David F, Moens L, Sandra P (2005) Automated headspace-solid-phase micro extraction–retention time locked-isotope dilution gas chromatography–mass spectrometry for the analysis of organotin compounds in water and sediment samples. J Chromatogr A 1079:408–414

    Article  CAS  Google Scholar 

  • Dirkx WMR, Ceulemans M, Adams FC (1992) Optimization of comprehensive speciation of organotin compounds in environmental samples by capillary gas chromatography helium microwave-induced plasma emission spectrometry. Anal Chem 64:159–165

    Article  Google Scholar 

  • Donard O, Lalere B, Martin F, Lobinski R (1995) Microwave-assisted leaching of organotin compounds from sediments for speciation analysis. Anal Chem 67:4250–4254

    Article  CAS  Google Scholar 

  • Dubalska K, Rutkowska M, Bajger-Nowak G, Konieczka P, NamieÅ›nik J (2013) Organotin compounds: environmental fate and analytics. Crit Rev Anal Chem 43:35–54

    Article  CAS  Google Scholar 

  • El Hellal M, Lespes G, Dachraoui M (2006) Determination of organotins in aquatic plants by headspace SPME followed by GC-PFPD determination. Int J Environ Anal Chem 86:37–41

    Google Scholar 

  • Feng YL, Narasaki H (2002) Speciation of organotin compounds in marine sediments by capillary column gas chromatography-atomic absorption spectrometry coupled with hydride generation. Anal Bioanal Chem 372:382–386

    Article  CAS  Google Scholar 

  • Fent K (1996a) Organotins in municipal wastewater and sewage sludge. In: Champ M, Seligman P (eds) Organotin: environmental fate and effects, 1st edn. Chapman & Hall, London, pp 1–25

    Google Scholar 

  • Fent K (1996b) Ecotoxicology of organotin compounds. Crit Rev Anal Chem 26:3–117

    Google Scholar 

  • Folsvik N, Berge JA, Brevik EM, Walday M (1999) Quantification of organotin compounds and determination of imposex in populations of dogwhelks (Nucella lapillus) from Norway. Chemosphere 38:681–691

    Article  CAS  Google Scholar 

  • Folsvik N, Brevik EM, Berge JA (2000) Monitoring of organotin compounds in seawater using semipermeable membrane devices (SPMDs): tentative results. J Environ Monit 2:281–284

    Article  CAS  Google Scholar 

  • Gallego M, Liva M, Olivas RM, Cámara C, Mu R, Carmen C (2006) Focused ultrasound and molecularly imprinted polymers: a new approach to organotin analysis in environmental samples. J Chromatogr A 1114:82–88

    Article  Google Scholar 

  • Godoi AFL, Words K (2003) GC analysis of organotin compounds using pulsed flame photometric detection and conventional flame photometric detection. Chromatographia 58:97–101

    CAS  Google Scholar 

  • Gonzalez E, Ortuno A (2002) Solid-phase extraction-liquid chromatography-fluorimetry for organotin speciation in natural waters. Chromatographia 55:19–24

    Article  Google Scholar 

  • Gonzalez E, Benzi M, Compañó R, Granados M, Prat MD (2001) Speciation of organotin compounds in shellfish by liquid chromatography—fluorimetric detection. Anal Chim Acta 443:183–190

    Article  Google Scholar 

  • Gonzalez E, Compañó R, Granados M, Dolors Prat M (2003) Detection techniques in speciation analysis of organotin compounds by liquid chromatography. Trends Anal Chem 22:26–33

    Article  Google Scholar 

  • Guomundsdottir LÓ, Ho KKY, Lam JCW, Svavarsson J, Leung KMY (2011) Long-term temporal trends (1992–2008) of imposex status associated with organotin contamination in the dogwhelk Nucella lapillus along the Icelandic coast. Mar Pollut Bull 63:500–507

    Article  Google Scholar 

  • Hoch M (2001) Organotin compounds in the environment—an overview. Appl Geochem 16:719–743

    Article  CAS  Google Scholar 

  • Ikonomou MG, Fernandez MP, He T, Cullon D (2002) Gas chromatography–high-resolution mass spectrometry based method for the simultaneous determination of nine organotin compounds in water, sediment and tissue. J Chromatogr A 975:319–333

    Article  CAS  Google Scholar 

  • Inoue Y, Kawabata K, Suzuki Y (1995) Speciation of organotin compounds using inductively coupled plasma mass spectrometry with micellar liquid chromatography. J Anal At Spectrom 10:363

    Article  CAS  Google Scholar 

  • Kabiersch G, Rajasa J, Tuomela M, Hatakka A, Virta M, Ste K (2013) Bioluminescent yeast assay for detection of organotin compounds. Anal Chem 85:5740–5745

    Article  CAS  Google Scholar 

  • Kadokami K, Uehiro T, Morita M, Fuwa K (1988) Determination of organotin compounds in water by bonded-phase extraction and high-performance liquid chromatography with long-tube atomic absorption spectrometric detection. J Anal At Spectrom 3:187

    Article  CAS  Google Scholar 

  • Kim NS, Shim WJ, Yim UH, Hong SH, Ha SY, Han GM, Shin KH (2014) Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea. Mar Pollut Bull 78:201–208

    Article  CAS  Google Scholar 

  • Kucuksezgin F, Aydin-Onen S, Gonul LT, Pazi I, Kocak F (2011) Assessment of organotin (butyltin species) contamination in marine biota from the Eastern Aegean Sea, Turkey. Mar Pollut Bull 62:1984–1988

    Article  CAS  Google Scholar 

  • Leermakers M, Nuyttens J, Baeyens W (2005) Organotin analysis by gas chromatography-pulsed flame-photometric detection (GC-PFPD). Anal Bioanal Chem 381:1272–1280

    Article  CAS  Google Scholar 

  • Liscio C, Di Carro M, Magi E (2009) Comparison of two analytical methods for the determination of organotin compounds in marine organisms. C R Chim 12:831–840

    Article  CAS  Google Scholar 

  • Louppis AP, Georgantelis D, Paleologos EK, Kontominas MG (2010) Determination of tributyltin through ultrasonic assisted micelle mediated extraction and GFAAS : application to the monitoring of tributyltin levels in Greek marine species. Food Chem 121:907–911

    Article  CAS  Google Scholar 

  • Magi E, Ianni C (1998) Determination of tributyltin in marine environment by means of liquid chromatography mass spectrometry with a particle beam interface. Anal Chim Acta 359:237–244

    Article  CAS  Google Scholar 

  • Malik AK, Grundmann M, Matysik F (2013) Development of a fast capillary electrophoresis-time-of-flight mass spectrometry method for the speciation of organotin compounds under separation conditions of high electrical field strengths. Talanta 116:559–562

    Article  CAS  Google Scholar 

  • Millan E, Pawliszyn J (2000) Determination of butyltin species in water and sediment by solid-phase microextraction–gas chromatography–flame ionization detection. J Chromatogr A 873:63–71

    Article  CAS  Google Scholar 

  • Narasaki H, Wang J (1998) Determination of organotin compounds in seawater by capillary column gas chromatography-atomic absorption spectrometry. Anal Sci 14:857–861

    Article  CAS  Google Scholar 

  • Neal CP, Munkittrick KR, Macdonald BA (2011) The effects of organotin on female gastropods. J Environ Monit 13:2360–2388

    Article  Google Scholar 

  • Nemanic T, Leskovsek H, Horvat M, VriÅ¡er B, Bolje A (2002) Organotin compounds in the marine environment of the Bay of Piran, Northern Adriatic Sea. J Environ Monit 4:426–430

    Article  Google Scholar 

  • Nichols DS, Jordan TB, Kerr N (2014) Determination of tributyltin in marine sediment and waters by pressurised solvent extraction and liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 406:2993–2998

    Article  CAS  Google Scholar 

  • Nwata BU (1994) Organotin compounds: their analyses and effect on model biomembranes. The University of British Columbia, Vancouver

    Google Scholar 

  • Oliveira R, Santelli RE (2010) Occurrence and chemical speciation analysis of organotin compounds in the environment: a review. Talanta 82:9–24

    Article  Google Scholar 

  • Pinochet H, Tessini C, Bravo M, Quiroz W, De Gregori I (2009) Butyltin compounds and their relation with organic matter in marine sediments from San Vicente Bay-Chile. Environ Monit Assess 155:341–353

    Article  CAS  Google Scholar 

  • Point D, Davis WC, Christopher SJ, Ellisor MB, Pugh RS, Becker PR, Donard OFX, Porter BJ, Wise S (2007) Development and application of an ultratrace method for speciation of organotin compounds in cryogenically archived and homogenized biological materials. Anal Bioanal Chem 387:2343–2355

    Article  CAS  Google Scholar 

  • Quevauviller P, Astruc M, Ariese F, Ebdon L (2000) Collaborative evaluation of methods for tributyltin determinations in sediment and mussel tissue. Trends Anal Chem 19:180–188

    Article  CAS  Google Scholar 

  • Radke B, Wasik A, Jewell LL, PÄ…czek U, NamieÅ›nik J (2013) The speciation of organotin compounds in sediment and water samples from the Port of Gdynia. Soil Sediment Contam Int J 22:614–630

    Article  CAS  Google Scholar 

  • Rainbow PS (1995) Biomonitoring of heavy metal availability in the marine environment. Mar Pollut Bull 31:183–192

    Article  CAS  Google Scholar 

  • Rajendran RB, Tao H, Nakazato T, Miyazaki A (2000) A quantitative extraction method for the determination of trace amounts of both butyl- and phenyltin compounds in sediments by gas chromatography-inductively coupled plasma mass spectrometry. Analyst 125:1757–1763

    Article  CAS  Google Scholar 

  • Ritsema R, de Smaele T, Moens L, de Jong AS, Donard OFX (1998) Determination of butyltins in harbour sediment and water by aqueous phase ethylation GC-ICP-MS and hydride generation GC-AAS. Environ Pollut 99:271–277

    Article  CAS  Google Scholar 

  • Rivaro P, Zaratin L, Frache R, Mazzucotelli A (1995) Determination of organotin compounds in marine mussel samples by using high-performance liquid chromatography-hydride generation inductively coupled plasma atomic emission spectrometry. Analyst 120:1937–1939

    Article  CAS  Google Scholar 

  • Rosenberg E, Kmetov V (2000) Investigating the potential of high-performance liquid chromatography with atmospheric pressure chemical ionization-mass spectrometry as an alternative method for the speciation analysis of organotin compounds. Fresenius J Anal Chem 366:400–407

    Article  CAS  Google Scholar 

  • Rutkowska M, Dubalska K, Konieczka P, NamieÅ›nik J (2014) Microextraction techniques used in the procedures for determining organomercury and organotin compounds in environmental samples. Molecules 19:7581–7609

    Article  Google Scholar 

  • Schubert P, Rosenberg E, Grasserbauer M (2000) Comparison of sodium tetraethylborate and sodium tetra(n-propyl)borate as derivatization reagent for the speciation of organotin and organolead compounds in water samples. Fresenius J Anal Chem 366:356–360

    Article  CAS  Google Scholar 

  • Segovia-Martinez L, Bouzas-Blanco A, Campíns-Falcó P, Seco-Torrecillas A (2010) Improving detection limits for organotin compounds in several matrix water samples by derivatization-headspace-solid-phase microextraction and GC-MS. Talanta 80:1888–1893

    Article  CAS  Google Scholar 

  • Shi J, Jiang G (2011) Application of gas chromatography–atomic fluorescence spectrometry hyphenated system for speciation of butyltin compounds in water samples. Spectrosc Lett 44:393–398

    Article  CAS  Google Scholar 

  • Smaele T, Moens L, Dams R, Sandra P (1996) Capillary gas chromatography-ICP mass spectrometry: a powerful hyphenated technique for the determination of organometallic compounds. Fresenius J Anal Chem 355:778–782

    Article  Google Scholar 

  • Stab JA, Cofino WP, van Hattum B, Brinkman UAT (1993) Comparison of GC/MSD and GC/AED for the determination of organotin compounds in the environment. Fresenius J Anal Chem 347:247–255

    Article  CAS  Google Scholar 

  • Staniszewska M, Radke B, NamieÅ›nik J, BolaÅ‚ek J (2008) Analytical methods and problems related to the determination of organotin compounds in marine sediments. Int J Environ Anal Chem 88:747–774

    Article  CAS  Google Scholar 

  • Takahashi S, Tanabe S, Takeuchi I, Miyazaki N (1999) Distribution and specific bioaccumulation of butyltin compounds in a marine ecosystem. Arch Environ Contam Toxicol 37:50–61

    Article  CAS  Google Scholar 

  • Takeuchi M, Mizuishi K, Hobo T (2000) Determination of organotin compounds in environmental samples. Anal Sci 16:349–359

    Article  CAS  Google Scholar 

  • Tang CH, Wang WH (2009) Organotin accumulation in oysters and rock shells under field conditions. J Environ Monit 11:1601–1607

    Article  CAS  Google Scholar 

  • Tao H, Rajendran RB, Quetel CR, Nakazato T, Tominaga M, Miyazaki A (1999) Tin speciation in the femtogram range in open ocean seawater by gas chromatography/inductively coupled plasma mass spectrometry using a shield torch at normal plasma conditions. Anal Chem 71:4208–4215

    Article  CAS  Google Scholar 

  • Tessier E, Amouroux D, Donard OFX (2002) Volatile organotin compounds (butylmethyltin) in three European estuaries (Gironde, Rhine, Scheldt). Biogeochemistry 59:161–181

    Article  CAS  Google Scholar 

  • Toledo E, Compañó R, Granados M, Dolors Prat M (2003) Detection techniques in speciation analysis of organotin compounds by liquid chromatography. TrAC Trends Anal Chem 22:26–33

    Article  Google Scholar 

  • Tolosa I, Bayona JM, Albaigés J, Alencastro LF, Tarradellas J (1991) Organotin speciation in aquatic matrices by CGC/FPD, ECD and MS, and LC/MS. Fresenius J Anal Chem 339:646–653

    Article  CAS  Google Scholar 

  • Van D (2006) Speciation analysis of butyl- and phenyltin compounds in environmental samples by GC separation and atomic spectrometric detection. UmeÃ¥ University, UmeÃ¥

    Google Scholar 

  • Vidal JLM, Vega AB, Arrebola FJ, González-Rodríguez MJ, Sánchez MCM, Frenich AG (2003) Trace determination of organotin compounds in water, sediment and mussel samples by low-pressure gas chromatography coupled to tandem mass spectrometry. Rapid Commun Mass Spectrom 17:2099–2106

    Article  CAS  Google Scholar 

  • Wahlen R, Catterick T (2003) Comparison of different liquid chromatography conditions for the separation and analysis of organotin compounds in mussel and oyster tissue by liquid chromatography–inductively coupled plasma mass spectrometry. J Chromatogr B 783:221–229

    Article  CAS  Google Scholar 

  • Wahlen R, Wolff-Briche C (2003) Comparison of GC-ICP-MS and HPLC-ICP-MS for species-specific isotope dilution analysis of tributyltin in sediment after accelerated solvent extraction. Anal Bioanal Chem 377:140–148

    Article  CAS  Google Scholar 

  • Xiao Q, Hu B, He M (2008) Speciation of butyltin compounds in environmental and biological samples using headspace single drop microextraction coupled with gas chromatography-inductively coupled plasma mass spectrometry. J Chromatogr A 1211:135–141

    Article  CAS  Google Scholar 

  • Yang L, Mester Z, Sturgeon RE (2002) Improvement in measurement precision with SPME by use of isotope dilution mass spectrometry and its application to the determination of tributyltin in sediment using SPME GC-ICP-MS. J Anal At Spectrom 17:944–949

    Article  CAS  Google Scholar 

  • Yu ZH, Zhang J, Wang XR (2011) Speciation analysis of organotin compounds in sediment by hyphenated technique of high performance liquid chromatography–inductively coupled plasma mass spectrometry. Chin J Anal Chem 39:544–547

    Article  CAS  Google Scholar 

  • Zhu S, Gan N, Pan D, Li Y, Yang T, Hu F, Cao Y, Wu D (2013a) Extraction of tributyltin by magnetic molecularly imprinted polymers. Microchim Acta 180:545–553

    Article  CAS  Google Scholar 

  • Zhu S, Hu F, Yang T, Gan N, Pan D, Cao Y, Wu D (2013b) Synthesis and characterization of a molecularly imprinted polymer for the determination of trace tributyltin in seawater and seafood by liquid chromatography-tandem mass spectroscopy. J Chromatogr B Anal Technol Biomed Life Sci 921–922:21–26

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babu Rajendran Ramaswamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Ramaswamy, B.R. (2017). Analytical Techniques for Trace Levels of Organotin Compounds in the Marine Environment. In: Horiguchi, T. (eds) Biological Effects by Organotins. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56451-5_1

Download citation

Publish with us

Policies and ethics