Skip to main content

Ecological Responses of Macrobenthic Communities in Tidal Flats to Disturbances by the Great East Japan Earthquake

  • Chapter
  • First Online:

Part of the book series: Ecological Research Monographs ((ECOLOGICAL))

Abstract

We investigated changes in taxon richness and composition of macrobenthic communities for four successive years after the tsunamis caused by the Great East Japan Earthquake at six intertidal flats in Sendai Bay, where monitoring had been ongoing before the tsunami. The field surveys showed that although taxon richness decreased in most of intertidal flats immediately after the tsunami struck, it subsequently increased within 1–2 years due to the colonization of many taxa, including those that had not existed in these tidal flats before the tsunamis. However, by 2014 (i.e., 4 years after the tsunami), taxon richness had decreased again to pre-tsunami levels. In addition, taxon composition was close to that found before the tsunami struck, especially in intertidal flats that were subjected to large disturbances by the tsunamis. Thus, a number of opportunistic taxa that had not been observed previously appeared after the Great East Japan Earthquake, but gradually decreased as the community structure recovered. This study also suggests that taxon composition of the macrobenthic communities changed year to year to some extent regardless of the tsunami disturbance. Our findings imply that since macrobenthic communities in intertidal flats are somewhat dynamic, they are not likely to attain the exact same structure as before the tsunamis, even though taxon composition is largely shaped by site-specific environmental conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Balthis WL, Hyland JL, Bearden DA (2006) Ecosystem responses to extreme natural event: impact of three sequential hurricanes in fall 1999 on sediment quality and condition of benthic fauna in the Neuse River estuary, North Carolina. Environ Monit Assess 119:367–389

    Article  CAS  PubMed  Google Scholar 

  • Bongers T, Bongers M (1998) Functional diversity of nematodes. Appl Soil Ecol 10:239–251

    Article  Google Scholar 

  • Botter-Carvalho ML, Carvalho PVVC, Santos PJP (2011) Recovery of macrobenthos in defaunated tropical estuarine sediments. Mar Pollut Bull 62:1867–1876

    Article  CAS  PubMed  Google Scholar 

  • Bourrouilh-Le Jan FG, Beck C, Gorsline DS (2007) Catastrophic events (hurricanes, tsunami and others) and their sedimentary records: introductory notes and new concepts for shallow water deposits. Sed Geol 199:1–11

    Article  Google Scholar 

  • Cardoso PG, Raffaelli D, Lillebø AI, Verdelhos T, Pardal MA (2008) The impact of extreme flooding events and anthropogenic stressors on the macrobenthic communities’ dynamics. Estuar Coast Shelf Sci 76:553–565

    Article  Google Scholar 

  • Collins SL, Glenn SM, Gibson DJ (1995) Experimental analysis of intermediate disturbance and initial floristic composition: decoupling cause and effect. Ecology 76:486–492

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and reefs. Science 199:1302–1310

    Article  CAS  PubMed  Google Scholar 

  • De la Huz R, Lastra M, Junoy J, Castellanos C, Viéitez JM (2005) Biological impacts of oil pollution and cleaning in the intertidal zone of exposed sandy beaches: preliminary study of the “Prestige” oil spill. Estuar Coast Shelf Sci 65:19–29

    Article  Google Scholar 

  • Engle VD, Hyland JL, Cooksey C (2009) Effects of hurricane Katrina on benthic macroinvertebrate communities along the northern Gulf of Mexico coast. Environ Monit Assess 150:193–209

    Article  PubMed  Google Scholar 

  • Fujioka Y, Tabuchi R, Hirata Y, Yoneda R, Patanaponpaiboon P, Poungparn S, Shibuno T, Ohba H (2008) Disturbance and recovery of mangrove forests and macrobenthic communities in Andaman Sea, Thailand following the Indian Ocean Tsunami. In: Proceedings of the 11th international coral reef symposium, pp 1225–1229

    Google Scholar 

  • Göthlich L, Oschlies A (2015) Disturbance characteristics determine the timescale of competitive exclusion in a phytoplankton model. Ecol Model 296:126–135

    Article  Google Scholar 

  • Jaramillo E, Dugan JE, Hubbard DM, Melnick D, Manzano M, Duarte C, Campos C, Sanchez R (2012) Ecological implications of extreme events: footprints of the 2010 earthquake along the Chilean Coast. PLoS One 7:1–8

    Article  Google Scholar 

  • Joydas TV, Qurban MA, Al-Suwailem A, Krishnakumar PK, Nazeer Z (2012) Macrobenthic community structure in the northern Saudi waters of the Gulf, 14 years after the 1991 oil spill. Mar Pollut Bull 64:325–335

    Article  CAS  PubMed  Google Scholar 

  • Kanaya G, Suzuki T, Maki H, Nakamura Y, Miyajima Y, Kikuchi E (2012) Effects of the 2011 tsunami on the topography, vegetation, and macrobenthic fauna in Gamo Lagoon, Japan. Jpn J Benthol 67:20–32

    Article  Google Scholar 

  • Kanaya G, Suzuki T, Kanou K, Kondoh T, Sato-Okoshi W, Kikuchi E (2016) Ecological consequences of the tsunamis caused by the Great East Japan Earthquake and subsequent disturbance events in a shallow brackish lagoon in Sendai Bay, Japan. In Urabe, Nakashizuka (eds) Ecological impacts of tsunamis on coastal ecosystems: Lessons from the Great East Japan Earthquake, Springer, pp 85–104

    Google Scholar 

  • Krishnankutty N (2006) Effects of 2004 tsunami on marine ecosystems – a perspective from the concept of disturbance. Curr Sci 90:772–773

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam, p 853

    Google Scholar 

  • Levin LA, Talley D, Thayer G (1996) Succession of macrobenthos in a created salt marsh. Mar Ecol Prog Ser 141:67–82

    Article  Google Scholar 

  • Lomovasky B, Firstater FN, Salazar AG, Mendo J, Iribarne OO (2011) Macro benthic community assemblage before and after the 2007 tsunami and earthquake at Paracas Bay, Peru. J Sea Res 65:205–212

    Article  Google Scholar 

  • Miura O, Sasaki Y, Chiba S (2012) Destruction of population of Batillaria attramentaria (caenogastropoda: batillariidae) by tsunami waves of the 2011 Tohoku earthquake. J Molluscan Stud 78:377–380

    Article  Google Scholar 

  • Mori A (2010) Disturbance ecology clarifies the non-equilibrium nature of forest ecosystems. Japanese J Ecol 60:19–39 (in Japanese with English abstract)

    Google Scholar 

  • Mori M, Takahashi T, The 2011 Tohoku Earthquake Tsunami Joint Survey Group (2012) Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami. Coast Eng J 54:1–27

    Article  Google Scholar 

  • Nakaoka M, Tanaka Y, Mukai H, Suzuki T, Aryuthaka C (2006) Tsunami impacts on biodiversity of seagrass communities in the Andaman Sea, Thailand: (1) seagrass abundance and diversity. The Nagisa World Congress, pp 49–56

    Google Scholar 

  • Okey TA (1997) Sediment flushing observations, earthquake slumping, and benthic community changes in Monterey Canyon head. Cont Shelf Res 17:877–897

    Article  Google Scholar 

  • Perkol-Finkel D, Airoldi L (2010) Loss and recovery potential of marine habitats: an experimental study of factors maintaining resilience in subtidal algal forests at the Adriatic Sea. PLoS One 5:1–11

    Article  Google Scholar 

  • Pickett STA (1980) Non-equilibrium coexistence of plants. Bull Torrey Bot Club 107:238–248

    Article  Google Scholar 

  • Pierce S, Luzzaro A, Caccianiga M, Ceriani RM, Cerabolini B (2007) Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. J Ecol 95:698–706

    Article  Google Scholar 

  • Pillay D, Perissinotto R (2008) The benthic macrofauna of the St. Lucia Estuary during the 2005 drought year. Estuar Coast Shelf Sci 77:35–46

    Article  Google Scholar 

  • Posey M, Lindberg W, Alphin T, Vose F (1996) Influence of storm disturbance on an offshore benthic community. Bull Mar Sci 59:523–529

    Google Scholar 

  • Roxburgh SG, Shea K, Wilson JB (2004) The intermediate disturbance hypothesis: patch dynamics and mechanisms of species coexistence. Ecology 85:359–371

    Article  Google Scholar 

  • Schlacher TA, Holzheimer A, Stevens T, Rissik D (2011) Impacts of the ‘Pacific Adventurer’ oil spill on the macrobenthos of subtropical sandy beaches. Estuar Coasts 34:937–949

    Article  Google Scholar 

  • Sousa WP (1984) The role of disturbance in natural communities. Ann Rev Ecol Syst 15:353–391

    Article  Google Scholar 

  • Stubbington R, Boulton AJ, Little S, Wood PJ (2015) Changes in invertebrate assemblage composition in benthic and hyporheic zones during a severe supraseasonal drought. Freshw Sci 34:344–354

    Article  Google Scholar 

  • Suzuki T, Sasaki M (2010) Civil procedure for researching benthic invertebrate animals inhabiting tidal flats in eastern Japan. Plankton Benthos Res 5:221–230

    Article  Google Scholar 

  • Turner MG, Dale VH (1998) Comparing large, infrequent disturbances: what have we learned? Ecosystems 1:493–496

    Article  Google Scholar 

  • Urabe J, Suzuki T, Nishita T, Makino W (2013) Immediate ecological impacts of the 2011 tohoku earthquake tsunami on intertidal flat communities. PLoS One 8(5):1–6

    Article  Google Scholar 

  • Whanpetch N, Nakaoka M, Mukai H, Suzuki T, Nojima S, Kawai T, Aryuthaka C (2010) Temporal changes in benthic communities of seagrass beds impacted by a tsunami in the Andaman Sea, Thailand. Estuar Coast Shelf Sci 87:246–252

    Article  Google Scholar 

  • White PS, Pickett STA (1985) Natural disturbance and patch dynamics: an introduction. In: Pichett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic, New York, pp 3–13

    Google Scholar 

Download references

Acknowledgments

We thank T. Uchino, G. Kanaya, and K. Kinoshita, Wetlands International Japan, undergraduate students in the biology course at Tohoku University, and all the participants of the citizen research program by Earthwatch Japan for their field support. This study was financially supported by Mitsui & Co., Ltd. Environment Fund (F11-F1-020), Keidanren Committee on Nature Conservation, and the Tohoku Ecosystem-Associated Marine Sciences (TEAMS) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jotaro Urabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Nishita, T., Makino, W., Suzuki, T., Urabe, J. (2016). Ecological Responses of Macrobenthic Communities in Tidal Flats to Disturbances by the Great East Japan Earthquake. In: Urabe, J., Nakashizuka, T. (eds) Ecological Impacts of Tsunamis on Coastal Ecosystems. Ecological Research Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56448-5_11

Download citation

Publish with us

Policies and ethics