Skip to main content

Flux-Based O3 Risk Assessment for Japanese Temperate Forests

  • Chapter
  • First Online:

Abstract

Ground-level ozone (O3) levels are expected to increase over the twenty-first century, particularly in the region of East Asia. We performed an O3 flux-based risk assessment of C sequestering capacity in an old cool temperate deciduous forest, consisting of O3-sensitive Japanese beech (Fagus crenata), and in a warm temperate deciduous and evergreen forest dominated by O3-tolerant Konara oak (Quercus serrata), based on long-term CO2 flux observations. Light-saturated gross primary production, as a measure of C sequestering capacity, declined earlier in the late-growth season with increasing cumulative O3 uptake, suggesting an earlier autumn senescence in the O3-sensitive beech forest, but not in the O3-tolerant oak forest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akimoto H (2003) Global air quality and pollution. Science 302:1716–1719

    Article  CAS  Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    Article  CAS  Google Scholar 

  • Ball JT et al (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens J (ed) Progress in photosynthesis research. Martinus-Nijhoff Publishers, Dordrecht, pp 221–224

    Chapter  Google Scholar 

  • Bauerle WL et al (2012) Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. PNAS 109:8612–8617

    Article  CAS  Google Scholar 

  • Biftu GF, Gan TY (2000) Assessment of evapotranspiration models applied to a watershed of Canadian Prairies with mixed land-uses. Hydrol Proc 14:1305–1325

    Article  Google Scholar 

  • Bohler S et al (2010) Differential impact of chronic ozone exposure on expanding and fully expanded poplar leaves. Tree Physiol 30:1415–1432

    Article  CAS  Google Scholar 

  • Calatayud V et al (2011) Responses of evergreen and deciduous Quercus species to enhanced ozone levels. Environ Pollut 159:55–63

    Article  CAS  Google Scholar 

  • Cieslik SA (2004) Ozone uptake by various surface types: a comparison between dose and exposure. Atmos Environ 38:2409–2420

    Article  CAS  Google Scholar 

  • Emberson LD et al (2000) Modelling stomatal ozone flux across Europe. Environ Pollut 109:403–413

    Article  CAS  Google Scholar 

  • Erisman JW et al (1994) Parametrization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmos Environ 28:2595–2607

    Article  CAS  Google Scholar 

  • Fares S et al (2013) Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest. Atmos Environ 67:242–251

    Article  CAS  Google Scholar 

  • Gerosa et al (2003) Micrometeorological determination of time-integrated stomatal ozone fluxes over wheat: a case study in Northern Italy. Atmos Environ 37:777–788

    Article  CAS  Google Scholar 

  • Gerosa G et al (2005) Ozone uptake by an evergreen Mediterranean Forest (Quercus ilex) in Italy. Part I: micrometeorological flux measurements and flux partitioning. Atmos Environ 39:3255–3266

    Article  CAS  Google Scholar 

  • Goto Y et al (2003) Aboveground biomass and net primary production of a broad-leaved secondary forest in the southern part of Kyoto prefecture, central Japan. Bull FFPRI 387:115–147 (in Japanese with English summary)

    Google Scholar 

  • Hicks BB et al (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut 36:311–330

    Article  CAS  Google Scholar 

  • Karnosky DF et al (2005) Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant Cell Environ 28:965–981

    Article  CAS  Google Scholar 

  • Kitao M et al (2009) Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient. Environ Pollut 157:537–544

    Article  CAS  Google Scholar 

  • Kitao M et al (2014) Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman-Monteith approach combined with a photosynthesis-dependent stomatal model. Environ Pollut 184:457–463

    Article  CAS  Google Scholar 

  • Kitao M et al (2015) Growth over-compensation against O3 exposure in two Japanese oak species, Quercus mongolica var. crispula and Quercus serrata, grown under elevated CO2. Environ Pollut 206:133–141

    Article  CAS  Google Scholar 

  • Kitao et al (2016) Increased phytotoxic O3 dose accelerates autumn senescence in an O3-sensitive beech forest even under the present-level O3. Sci Rep 6:32549

    Google Scholar 

  • Koike T et al (2013) Effects of ozone on forest ecosystems in East and Southeast Asia. Elsevier Dev Environ Sci 13:371–390

    Google Scholar 

  • Komatsu M et al (2015) Estimation of ozone concentrations above forests using atmospheric observations at urban air pollution monitoring stations. J Agric Meteorol 71:202–210

    Article  Google Scholar 

  • Kominami Y et al (2012) Heterotrophic respiration causes seasonal hysteresis in soil respiration in a warm-temperate forest. J For Res 17:296–304

    Article  Google Scholar 

  • Matyssek R et al (2007) Promoting the O3 flux concept for European forest trees. Environ Pollut 146:587–607

    Article  CAS  Google Scholar 

  • Matyssek R et al (2010) Advances in understanding ozone impact on forest trees: message from novel phytotron and free-air fumigation studies. Environ Pollut 158:1990–2006

    Article  CAS  Google Scholar 

  • Monteith JL (1981) Evaporation and surface temperature. Q J R Meteorol Soc 107:1–27

    Article  Google Scholar 

  • Nagashima T et al (2003) The relative importance of various source regions on East Asian surface ozone. Atmos Chem Phys 10:11305–11322

    Article  Google Scholar 

  • Ohara T et al (2008) Long-Term simulations of surface ozone in East Asia during 1980–2020 with CMAQ. In: Borrego C, Miranda AI (eds) NATO science for peace and security series – C: environmental security, air pollution modelling and its application XIX. Springer, Dordrecht, pp 136–144

    Google Scholar 

  • Richter A et al (2005) Increase in tropospheric nitrogen dioxide over China observed from space. Nature 437:129–132

    Article  CAS  Google Scholar 

  • Simpson D et al (2012) The EMEP MSC-W chemical transport model – technical description. Atmos Chem Phys 12:7825–7865

    Article  CAS  Google Scholar 

  • Yamaguchi M et al (2011) Experimental studies on the effects of ozone on growth and photosynthetic activity of Japanese forest tree species. Asian J Atmos Environ 5:65–78

    Article  CAS  Google Scholar 

  • Yamaji K et al (2003) Ozone exposure over two growing seasons alters root-to-shoot ratio and chemical composition of birch (Betula pendula Roth). Glob Chang Biol 9:1363–1377

    Article  Google Scholar 

  • Yasuda Y et al (2012) Carbon balance in a cool-temperate deciduous forest in northern Japan: seasonal and interannual variations, and environmental controls of its annual balance. J For Res 17:253–267

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Japan’s Ministry of the Environment financially supported this study under a program of the Environment Research and Technology Development Fund (5B-1105, 2011–2013). We greatly appreciate Iwate prefecture and Kyoto prefecture for providing ground-based ozone data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsutoshi Kitao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Kitao, M. et al. (2017). Flux-Based O3 Risk Assessment for Japanese Temperate Forests. In: Izuta, T. (eds) Air Pollution Impacts on Plants in East Asia. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56438-6_8

Download citation

Publish with us

Policies and ethics