Skip to main content

Microfluidic Approach to Cell Handling and Measurement

  • Chapter
  • First Online:
Intelligent Nanosystems for Energy, Information and Biological Technologies

Abstract

Microfluidic technologies enable us to analyze cells with much higher resolution in space and time. The approaches are mostly realized by making use of numerous advantageous features of microfluidic systems, such as relatively small dimensions, low Reynolds number flow, etc. In this chapter, the examples of microfluidic approach to cell handling and measurement highlighting its advantageous features will be described. It will be shown that the microfluidic approach is among the promising methods for the future experimentation in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Lancaster et al., Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013). doi:10.1038/nature12517

    Article  Google Scholar 

  2. M. Eiraku et al., Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011). doi:10.1038/nature09941

    Article  Google Scholar 

  3. H.L. Ashe, J. Briscoe, The interpretation of morphogen gradients. Development 133, 385–394 (2006). doi:10.1242/dev.02238

    Article  Google Scholar 

  4. J.B. Gurdon, P.Y. Bourillot, Morphogen gradient interpretation. Nature 413, 797–803 (2001). doi:10.1038/35101500

    Article  Google Scholar 

  5. D. Irimia et al., Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab Chip 6, 191–198 (2006). doi:10.1039/b511877h

    Article  Google Scholar 

  6. V.V. Abhyankar, M.A. Lokuta, A. Huttenlocher, D.J. Beebe, Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6, 389–393 (2006). doi:10.1039/b514133h

    Article  Google Scholar 

  7. J. Diao et al., A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab Chip 6, 381–388 (2006). doi:10.1039/b511958h

    Article  Google Scholar 

  8. H. Mao, P.S. Cremer, M.D. Manson, A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 100, 5449–5454 (2003). doi:10.1073/pnas.0931258100

    Article  Google Scholar 

  9. B.G. Chung et al., Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5, 401–406 (2005). doi:10.1039/b417651k

    Article  Google Scholar 

  10. Y. Tanaka, M. Yamato, T. Okano, T. Kitamori, K. Sato, Evaluation of effects of shear stress on hepatocytes by a microchip-based system. Meas. Sci. Technol. 17, 3167–3170 (2006). doi:10.1088/0957-0233/17/12/S08

    Article  Google Scholar 

  11. S.M. Dang, M. Kyba, R. Perlingeiro, G.Q. Daley, P.W. Zandstra, Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol. Bioeng. 78, 442–453 (2002). doi:10.1002/Bit.10220

    Article  Google Scholar 

  12. L. Larue et al., A role for cadherins in tissue formation. Development 122, 3185–3194 (1996)

    Google Scholar 

  13. G. Keller, Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 19, 1129–1155 (2005). doi:10.1101/Gad.1303605

    Article  Google Scholar 

  14. W.T. Fung, A. Beyzavi, P. Abgrall, N.T. Nguyen, H.Y. Li, Microfluidic platform for controlling the differentiation of embryoid bodies. Lab Chip 9, 2591–2595 (2009). doi:10.1039/b903753e

    Article  Google Scholar 

  15. J. Kawada, H. Kimura, H. Akutsu, Y. Sakai, T. Fujii, Spatiotemporally controlled delivery of soluble factors for stem cell differentiation. Lab Chip 12, 4508–4515 (2012). doi:10.1039/c2lc40268h

    Article  Google Scholar 

  16. F.M. Watt, B.L. Hogan, Out of Eden: stem cells and their niches. Science 287, 1427–1430 (2000)

    Article  Google Scholar 

  17. C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, D.E. Ingber, Geometric control of cell life and death. Science 276, 1425–1428 (1997)

    Article  Google Scholar 

  18. E. Delamarche, A. Bernard, H. Schmid, B. Michel, H. Biebuyck, Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276, 779–781 (1997)

    Article  Google Scholar 

  19. S.A. Ruiz, C.S. Chen, Microcontact printing: a tool to pattern. Soft Matter 3, 168–177 (2007). doi:10.1039/B613349e

    Article  Google Scholar 

  20. A. Tourovskaia, X. Figueroa-Masot, A. Folch, Long-term microfluidic cultures of myotube microarrays for high-throughput focal stimulation. Nat. Protoc. 1, 1092–1104 (2006). doi:10.1038/nprot.2006.123

    Article  Google Scholar 

  21. K. Ono, S. Kaneda, T. Fujii, Single-step CE for miniaturized and easy-to-use system. Electrophoresis 34, 903–910 (2013). doi:10.1002/elps.201200365

    Article  Google Scholar 

  22. D. Wirtz, K. Konstantopoulos, P.C. Searson, The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011). doi:10.1038/nrc3080

    Article  Google Scholar 

  23. M. Yu, S. Stott, M. Toner, S. Maheswaran, D.A. Haber, Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol. 192, 373–382 (2011). doi:10.1083/jcb.201010021

    Article  Google Scholar 

  24. G. Vona et al., Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulatingtumor cells. Am. J. Pathol. 156, 57–63 (2000). doi:10.1016/S0002-9440(10)64706-2

    Article  Google Scholar 

  25. W.J. Allard et al., Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10, 6897–6904 (2004). doi:10.1158/1078-0432.CCR-04-0378

    Article  Google Scholar 

  26. P. Li, Z.S. Stratton, M. Dao, J. Ritz, T.J. Huang, Probing circulating tumor cells in microfluidics. Lab Chip 13, 602–609 (2013). doi:10.1039/c2lc90148j

    Article  Google Scholar 

  27. S. Zheng et al., 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed. Microdevices 13, 203–213 (2011). doi:10.1007/s10544-010-9485-3

    Article  Google Scholar 

  28. S.L. Stott et al., Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. USA 107, 18392–18397 (2010). doi:10.1073/pnas.1012539107

    Article  Google Scholar 

  29. Y. Dong et al., Microfluidics and circulating tumor cells. J. Mol. Diagn. 15, 149–157 (2013). doi:10.1016/J.Jmoldx.2012.09.004

    Article  Google Scholar 

  30. J.S. de Bono et al., Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14, 6302–6309 (2008). doi:10.1158/1078-0432.CCR-08-0872

    Article  Google Scholar 

  31. S. Bhatia, J.V. Frangioni, R.M. Hoffman, A.J. Iafrate, K. Polyak, The challenges posed by cancer heterogeneity. Nat. Biotechnol. 30, 604–610 (2012). doi:10.1038/nbt.2294

    Article  Google Scholar 

  32. S.C. Bendall, G.P. Nolan, From single cells to deep phenotypes in cancer. Nat. Biotechnol. 30, 639–647 (2012). doi:10.1038/nbt.2283

    Article  Google Scholar 

  33. U. Dharmasiri et al., Highly efficient capture and enumeration of low abundance prostate cancer cells using prostate-specific membrane antigen aptamers immobilized to a polymeric microfluidic device. Electrophoresis 30, 3289–3300 (2009). doi:10.1002/elps.200900141

    Article  Google Scholar 

  34. E. Ozkumur et al., Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci. Transl. Med. 5, 179ra147 (2013). doi:10.1126/scitranslmed.3005616

    Article  Google Scholar 

  35. Y. Chen et al., Rare cell isolation and analysis in microfluidics. Lab Chip 14, 626–645 (2014). doi:10.1039/c3lc90136j

    Article  Google Scholar 

  36. D. Di Carlo, L.Y. Wu, L.P. Lee, Dynamic single cell culture array. Lab Chip 6, 1445–1449 (2006). doi:10.1039/b605937f

    Article  Google Scholar 

  37. J.R. Rettig, A. Folch, Large-scale single-cell trapping and imaging using microwell arrays. Anal. Chem. 77, 5628–5634 (2005). doi:10.1021/ac0505977

    Article  Google Scholar 

  38. S.H. Kim, T. Yamamoto, D. Fourmy, T. Fujii, Electroactive microwell arrays for highly efficient single-cell trapping and analysis. Small 7, 3239–3247 (2011). doi:10.1002/smll.201101028

    Article  Google Scholar 

  39. M. Kobayashi, S.H. Kim, H. Nakamura, S. Kaneda, T. Fujii, Cancer cell analyses at the single cell-level using electroactive microwell array device. PLoS One 10, e0139980 (2015). doi:10.1371/journal.pone.0139980.g001

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to their collaborators; Dr. Kiyotaka Shiba at Cancer Research Foundation (Tokyo, Japan), Dr. Hidenori Akutsu at National Center for Child Health and Development (Tokyo, Japan) for their kind help, and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Fujii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kawada, J., Kaneda, S., Kim, S.H., Fujii, T. (2016). Microfluidic Approach to Cell Handling and Measurement. In: Sone, J., Tsuji, S. (eds) Intelligent Nanosystems for Energy, Information and Biological Technologies. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56429-4_6

Download citation

Publish with us

Policies and ethics