Skip to main content

Field-Effect Transistors for Detection of Biomolecular Recognition

  • Chapter
  • First Online:
Intelligent Nanosystems for Energy, Information and Biological Technologies

Abstract

Electrical biosensors have attracted increasing attention in such fields as point-of-care testing, drug discovery, and healthcare products. In order for next-generation biosensor platforms to become more useful in our daily lives, it will be necessary to significantly improve their sensitivity, specificity, and parallelism. A precisely designed thin layer in molecular dimension on a solid substrate is essential for biosensing. The surfaces of biosensors are designed to capture target bioanalytes. In addition, the solid/liquid interface plays an important role in realizing additional functionalities such as target manipulation, signal stabilization, and switching. A functional interface combined with a field-effect device would enable on-demand label-free biosensing in a portable format. In this chapter, we provide an overview of biomolecular recognition in the context of electrochemical sensing and biosensing. Also, we review recent progress and trends in biosensing, including our own research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. BM17(1), 70–71 (1970)

    Article  Google Scholar 

  2. P. Jiang, Z. Guo, Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord. Chem. Rev. 248(1–2), 205–229 (2004)

    Article  Google Scholar 

  3. J. Janata, S. Moss, Chemically sensitive field-effect transistors. Biomed. Eng. 11(7), 241–245 (1976)

    Google Scholar 

  4. S. Hrapovic, Y.L. Liu, K.B. Male, J.H.T. Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 76(4), 1083–1088 (2004)

    Article  Google Scholar 

  5. T. Goda, Y. Miyahara, Label-free and reagent-less protein biosensing using aptamer-modified extended-gate field-effect transistors. Biosens. Bioelectron. 45, 89–94 (2013)

    Article  Google Scholar 

  6. M. Lohndorf, U. Schlecht, T. Gronewold, A. Malave, M. Tewes, Microfabricated high-performance microwave impedance biosensors for detection of aptamer–protein interactions. Appl. Phys. Lett. 87(24), 243902 (2005)

    Article  Google Scholar 

  7. C. Kataoka-Hamai, Y. Miyahara, Label-free detection of DNA by field-effect devices. IEEE Sens. J. 11(12), 3153–3160 (2011)

    Article  Google Scholar 

  8. T. Goda, A. Singi, Y. Maeda, A. Matsumoto, M. Torimura, H. Aoki et al., Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes. Sensors 13(2), 2267–2278 (2013)

    Article  Google Scholar 

  9. M. Tsutsui, M. Taniguchi, K. Yokota, T. Kawai, Identifying single nucleotides by tunnelling current. Nat. Nanotechnol. 5(4), 286–290 (2010)

    Article  Google Scholar 

  10. F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C. Lieber, Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 101(39), 14017–14022 (2004)

    Article  Google Scholar 

  11. S. Thomas, G. Joly, T. Swager, Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107(4), 1339–1386 (2007)

    Article  Google Scholar 

  12. P. Maroney, S. Chamnongpol, F. Souret, T. Nilsen, Direct detection of small RNAs using splinted ligation. Nat. Protoc. 3(2), 279–287 (2008)

    Article  Google Scholar 

  13. J. Jin, M. Cid, C. Poole, L. McReynolds, Protein mediated miRNA detection and siRNA enrichment using p 19. Biotechniques 48(6), XVII–XXIII (2010)

    Article  Google Scholar 

  14. G. Liu, Y. Wan, V. Gau, J. Zhang, L. Wang, S. Song et al., An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets. J. Am. Chem. Soc. 130(21), 6820–6825 (2008)

    Article  Google Scholar 

  15. T. Endo, K. Kerman, N. Nagatani, Y. Takamura, E. Tamiya, Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal. Chem. 77(21), 6976–6984 (2005)

    Article  Google Scholar 

  16. L. He, M. Musick, S. Nicewarner, F. Salinas, S. Benkovic, M. Natan et al., Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J. Am. Chem. Soc. 122(38), 9071–9077 (2000)

    Article  Google Scholar 

  17. M. Estevez, M. Otte, B. Sepulveda, L. Lechuga, Trends and challenges of refractometric nanoplasmonic biosensors: a review. Anal. Chim. Acta 806, 55–73 (2014)

    Article  Google Scholar 

  18. J. Fritz, M. Baller, H. Lang, H. Rothuizen, P. Vettiger, E. Meyer et al., Translating biomolecular recognition into nanomechanics. Science 288(5464), 316–318 (2000)

    Article  Google Scholar 

  19. K. Marx, Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4(5), 1099–1120 (2003)

    Article  Google Scholar 

  20. A. Steel, T. Herne, M. Tarlov, Electrochemical quantitation of DNA immobilized on gold. Anal. Chem. 70(22), 4670–4677 (1998)

    Article  Google Scholar 

  21. C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, L. Niu, Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 81(6), 2378–2382 (2009)

    Article  Google Scholar 

  22. T. Sakata, Y. Miyahara, Detection of DNA recognition events using multi-well field effect devices. Biosens. Bioelectron. 21(5), 827–832 (2005)

    Article  Google Scholar 

  23. T. Sakata, Y. Miyahara, DNA sequencing based on intrinsic molecular charges. Angew. Chem. Int. Ed. 45(14), 2225–2228 (2006)

    Article  Google Scholar 

  24. J. Rothberg, W. Hinz, T. Rearick, J. Schultz, W. Mileski, M. Davey et al., An integrated semiconductor device enabling non-optical genome sequencing. Nature 475(7356), 348–352 (2011)

    Article  Google Scholar 

  25. H. Otsuka, E. Uchimura, H. Koshino, T. Okano, K. Kataoka, Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J. Am. Chem. Soc. 125(12), 3493–3502 (2003)

    Article  Google Scholar 

  26. A. Matsumoto, H. Cabral, N. Sato, K. Kataoka, Y. Miyahara, Assessment of tumor metastasis by the direct determination of cell-membrane sialic acid expression. Angew. Chem. Int. Ed. 49(32), 5494–5497 (2010)

    Article  Google Scholar 

  27. A. Matsumoto, N. Sato, K. Kataoka, Y. Miyahara, Noninvasive sialic acid detection at cell membrane by using phenylboronic acid modified self-assembled monolayer gold electrode. J. Am. Chem. Soc. 131(34), 12022–12023 (2009)

    Article  Google Scholar 

  28. D. Schaffhauser, M. Patti, T. Goda, Y. Miyahara, I. Forster, P. Dittrich, An Integrated field-effect microdevice for monitoring membrane transport in Xenopus laevis oocytes via lateral proton diffusion. PLoS ONE 7(7), e39238 (2012)

    Article  Google Scholar 

  29. S. Kim, J. Rusling, F. Papadimitrakopoulos, Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv. Mater. 19(20), 3214–3228 (2007)

    Article  Google Scholar 

  30. B. Allen, P. Kichambare, A. Star, Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19(11), 1439–1451 (2007)

    Article  Google Scholar 

  31. A. Gao, N. Lu, Y. Wang, P. Dai, T. Li, X. Gao et al., Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett. 12(10), 5262–5268 (2012)

    Article  Google Scholar 

  32. W. Yang, K. Ratinac, S. Ringer, P. Thordarson, J. Gooding, F. Braet, Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49(12), 2114–2138 (2010)

    Article  Google Scholar 

  33. S. Tans, A. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393(6680), 49–52 (1998)

    Article  Google Scholar 

  34. P. Hu, J. Zhang, L. Li, Z. Wang, W. O’Neill, P. Estrela, Carbon nanostructure-based field-effect transistors for label-gree chemical/biological sensors. Sensors 10(5), 5133–5159 (2010)

    Article  Google Scholar 

  35. N. Elfstrom, R. Juhasz, I. Sychugov, T. Engfeldt, A. Karlstrom, J. Linnros, Surface charge sensitivity of silicon nanowires: Size dependence. Nano Lett. 7(9), 2608–2612 (2007)

    Article  Google Scholar 

  36. E. Stern, R. Wagner, F. Sigworth, R. Breaker, T. Fahmy, M. Reed, Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett. 7(11), 3405–3409 (2007)

    Article  Google Scholar 

  37. Y. Bunimovich, Y. Shin, W. Yeo, M. Amori, G. Kwong, J. Heath, Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc. 128(50), 16323–16331 (2006)

    Article  Google Scholar 

  38. G. Zhang, G. Zhang, J. Chua, R. Chee, E. Wong, A. Agarwal et al., DNA sensing by silicon nanowire: charge layer distance dependence. Nano Lett. 8(4), 1066–1070 (2008)

    Article  Google Scholar 

  39. J. Hahm, C. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4(1), 51–54 (2004)

    Article  Google Scholar 

  40. E. Stern, J. Klemic, D. Routenberg, P. Wyrembak, D. Turner-Evans, A. Hamilton et al., Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127), 519–522 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

Our work in this chapter was supported in part by the Japan Science and Technology Agency (JST), Core Research of Evolutional Science and Technology (CREST), and by the Japan Society for the Promotion of Science (JSPS) through the “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program),” initiated by the Council for Science and Technology Policy (CSTP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Miyahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Tabata, M., Goda, T., Matsumoto, A., Miyahara, Y. (2016). Field-Effect Transistors for Detection of Biomolecular Recognition. In: Sone, J., Tsuji, S. (eds) Intelligent Nanosystems for Energy, Information and Biological Technologies. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56429-4_2

Download citation

Publish with us

Policies and ethics