Skip to main content
  • 720 Accesses

Abstract

Engineering the interfacial contact between device materials and biological systems (body, tissue, cell, and protein) is of central importance to the advancement of bioelectronic devices. Here, novel possibilities of electrochemical techniques for creation of smart biodevices are discussed. Three original techniques for biocompatible interfacing will be described: (1) the electrochemical biolithography for spatiotemporal control of protein adsorption and cell adhesion even inside a microfluidic channel; (2) the hydrogel-based biocompatible electrodes prepared by electrochemical polymerization of conducting polymers; (3) the high performance enzyme electrodes made of engineered nanocarbon materials. These varieties of novel electrochemical techniques have been utilized for creating smart devices, such as on-demand biochip, contractile biochip, and self-powered biosensors and medical patches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Shin, Biomaterials 28, 126–133 (2007)

    Article  Google Scholar 

  2. N. Xia, C.K. Thodeti, T.P. Hunt, Q.B. Xu, M. Ho, G.M. Whitesides, R. Westervelt, D.E. Ingber, FASEB J. 22, 1649–1659 (2008)

    Article  Google Scholar 

  3. H. Kaji, K. Tsukidate, T. Matsue, M. Nishizawa, J. Am. Chem. Soc. 126, 15026–15027 (2004)

    Article  Google Scholar 

  4. H. Kaji, K. Tsukidate, M. Hashimoto, T. Matsue, M. Nishizawa, Langmuir 21, 6966–6969 (2005)

    Article  Google Scholar 

  5. H. Kaji, T. Kawashima, M. Nishizawa, Langmuir 22, 10784–10787 (2006)

    Article  Google Scholar 

  6. S. Sekine, H. Kaji, M. Nishizawa, Anal. Bioanal. Chem. 391, 2711–2716 (2008)

    Article  Google Scholar 

  7. S. Sekine, H. Kaji, M. Nishizawa, Electrochem. Commun. 11, 1781–1784 (2009)

    Article  Google Scholar 

  8. K. Nagamine, T. Kawashima, T. Ishibashi, H. Kaji, M. Kanzaki, M. Nishizawa, Biotechnol. Bioeng. 105, 1161–1167 (2010)

    Google Scholar 

  9. T. Kawashima, T. Yokoi, H. Kaji, M. Nishizawa, Chem. Commun. 46, 2070–2072 (2010)

    Article  Google Scholar 

  10. K. Nagamine, T. Kawashima, S. Sekine, Y. Ido, M. Kanzaki, M. Nishizawa, Lab Chip 11, 513–517 (2011)

    Article  Google Scholar 

  11. A. Bange, H.B. Halsall, W.R. Heineman, Biosens. Bioelectron. 20, 2488–2503 (2005)

    Article  Google Scholar 

  12. P. Mitchell, Nat. Biotechnol. 19, 717–718 (2001)

    Article  Google Scholar 

  13. D.R. Meldrum, M.R. Holl, Science 297, 1197–1198 (2002)

    Article  Google Scholar 

  14. H. Kaji, M. Hashimoto, M. Nishizawa, Anal. Chem. 78, 5469–5473 (2006)

    Article  Google Scholar 

  15. M. Hashimoto, H. Kaji, M.E. Kemppinen, M. Nishizawa, Sens. Actuators B 128, 545–551 (2008)

    Article  Google Scholar 

  16. H. Kaji, M. Hashimoto, S. Sekine, T. Kawashima, M. Nishizawa, Electrochemistry 76, 555–558 (2008)

    Article  Google Scholar 

  17. M. Hashimoto, H. Kaji, M. Nishizawa, Biosen. Bioelectron. 24, 2892–2897 (2009)

    Article  Google Scholar 

  18. T.L. Rose, L.S. Robblee, IEEE Trans. Biomed. Eng. 37, 1118–1120 (1990)

    Article  Google Scholar 

  19. P.M. George, A.W. Lyckman, D.A. LaVan, A. Hegde, Y. Leung, R. Avasare, Biomaterials 26, 3511–3519 (2005)

    Article  Google Scholar 

  20. C.E. Schmidt, V.R. Shastri, J.P. Vacanti, R. Langer, Proc. Natl. Acad. Sci. 94, 8948–8953 (1997)

    Article  Google Scholar 

  21. X. Cui, J.F. Hetke, J.A. Wiler, D.J. Anderson, D.C. Martin, Sens. Actuator A 93, 8–18 (2001)

    Article  Google Scholar 

  22. M. Nishizawa, M. Shibuya, T. Sawaguchi, T. Matsue, I. Uchida, J. Phys. Chem. 95, 9042–9044 (1991)

    Article  Google Scholar 

  23. M. Nishizawa, Y. Miwa, T. Matsue, I. Uchida, J. Electrochem. Soc. 140, 1650–1655 (1993)

    Article  Google Scholar 

  24. M. Nishizawa, H. Nozaki, H. Kaji, T. Kitazume, N. Kobayashi, T. Ishibashi, T. Abe, Biomaterials 28, 1480–1485 (2007)

    Article  Google Scholar 

  25. M. Nishizawa, T. Kamiya, H. Nozaki, H. Kaji, Langmuir 23, 8304–8307 (2007)

    Article  Google Scholar 

  26. S. Sekine, Y. Ido, T. Miyake, K. Nagamine, M. Nishizawa, J. Am. Chem. Soc. 132, 13174–13175 (2010)

    Article  Google Scholar 

  27. M. Sasaki, B.C. Karikkineth, K. Nagamine, H. Kaji, K. Torimitsu, M. Nishizawa, Adv. Healthc. Mater. 3, 1919–1927 (2014)

    Article  Google Scholar 

  28. D.-H. Kim, J.A. Rogers, Adv. Mater. 20, 4887–4892 (2008)

    Article  Google Scholar 

  29. J.A. Rogers, T. Someya, Y. Huang, Science 327, 1603–1607 (2010)

    Article  Google Scholar 

  30. Y. Ido, D. Takahashi, M. Sasaki, K. Nagamine, T. Miyake, P. Jasinski, M. Nishizawa, ACS Macro Lett. 1, 400–403 (2012)

    Article  Google Scholar 

  31. E.R. Luckarift, P. Atanassov, G.R. Johnson (eds.), Enzymatic Fuel Cells: From Fundamentals to Applications (Wiley, New York, 2014)

    Google Scholar 

  32. T. Miyake, S. Yoshino, T. Yamada, K. Hata, M. Nishizawa, J. Am. Chem. Soc. 133, 5129–5134 (2011)

    Article  Google Scholar 

  33. S. Yoshino, T. Miyake, T. Yamada, K. Hata, M. Nishizawa, Adv. Energy Mater. 3, 60–64 (2013)

    Article  Google Scholar 

  34. K. Haneda, S. Yoshino, T. Ofuji, T. Miyake, M. Nishizawa, Electrochim. Acta 82, 175–178 (2012)

    Article  Google Scholar 

  35. T. Miyake, K. Haneda, S. Yoshino, M. Nishizawa, Biosens. Bioelectron. 40, 45–49 (2013)

    Article  Google Scholar 

  36. T. Miyake, K. Haneda, N. Nagai, Y. Yatagawa, H. Ohnami, S. Yoshino, T. Abe, M. Nishizawa, Energy Environ. Sci. 4, 5008–5012 (2011)

    Article  Google Scholar 

  37. Y. Ogawa, K. Kato, T. Miyake, K. Nagamine, T. Ofuji, S. Yoshino, M. Nishizawa, Adv. Healthc. Mater. (2015). doi:10.1002/adhm.201400457

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matsuhiko Nishizawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Nishizawa, M. (2016). Electrochemistry-Based Smart Biodevices. In: Sone, J., Tsuji, S. (eds) Intelligent Nanosystems for Energy, Information and Biological Technologies. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56429-4_15

Download citation

Publish with us

Policies and ethics