Skip to main content

Construction of Negatively Curved Cubic Carbon Crystals via Standard Realizations

  • Conference paper
  • First Online:
Mathematical Challenges in a New Phase of Materials Science

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 166))

Abstract

In Tagami et al. (Carbon 76:266–274, 2014), we constructed physically stable sp2 negatively curved cubic carbon structures which reticulate a Schwarz P-like surface. The method for constructing such crystal structures is based on the notion of the standard realization of abstract crystal lattices. In this paper, we expound on the mathematical method to construct such crystal structures.

Dedicate to Yumiko Naito

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tagami, M., Liang, Y., Naito, H., Kawazoe, Y., Kotani, M.: Negatively curved cubic carbon crystals with octahedral symmetry. Carbon 76, 266–274 (2014). http://dx.doi.org/10.1016/j.carbon.2014.04.077

    Google Scholar 

  2. Mackay, A.L., Terrones, H.: Diamond from graphite. Nature 352, 762 (1991). http://dx.doi.org/10.1038/352762a0

    Google Scholar 

  3. Terrones, H., Mackay, A.L.: Triply periodic minimal-surfaces decorated with curved graphite. Chem. Phys. Lett. 207, 45–50 (1993). http://dx.doi.org/10.1016/0009-2614(93)85009-d

    Google Scholar 

  4. Terrones, H., Mackay, A.L.: Negatively curved graphite and triply periodic minimal-surfaces. J. Math. Chem. 15, 183–195 (1994). http://dx.doi.org/10.1007/bf01277558

  5. Lenosky, T., Gonze, X., Teter, M., Elser, V.: Energetics of negatively curved graphitic carbon. Nature 355, 333–335 (1992). http://dx.doi.org/10.1038/355333a0

    Google Scholar 

  6. Phillips, R., Drabold, D.A., Lenosky, T., Adams, G.B., Sankey, O.F.: Electronic-structure of schwarzite. Phys. Rev. B 46 1941–1943 (1992). http://dx.doi.org/10.1103/PhysRevB.46.1941

    Google Scholar 

  7. Huang, M.Z., Ching, W.Y., Lenosky, T.: Electronic-properties of negative-curvature periodic graphitic carbon surfaces. Phys. Rev. B 47, 1593–1606 (1993). http://dx.doi.org/10.1103/PhysRevB.47.1593

    Google Scholar 

  8. Townsend, S.J., Lenosky, T.J., Muller, D.A., Nichols, C.S., Elser, V.: Negatively curved graphitic sheet model of amorphous-carbon. Phys. Rev. Lett. 69, 921–924 (1992). http://dx.doi.org/10.1103/PhysRevLett.69.921

    Google Scholar 

  9. Mackay, A.L., Terrones, H., Fowler, P.W.: Hypothetical graphite structures with negative gaussian curvature. Philos. Trans. R. Soc. A 343, 113–127 (1993). http://dx.doi.org/10.1098/rsta.1993.0045

  10. M. Kotani Sunada, T.: Standard realizations of crystal lattices via harmonic maps. Trans. Am. Math. Soc. 353, 1–20 (2001).http://dx.doi.org/10.1090/S0002-9947-00-02632-5

  11. Sunada, T.: Topological Crystallography. Surveys and Tutorials in the Applied Mathematical Sciences, vol. 6. Springer, Tokyo (2013). http://dx.doi.org/10.1007/978-4-431-54177-6

    Google Scholar 

  12. Schoen, A.H.: Infinite periodic minimal surfaces without self-intersections. NASA technical note, TN D-5541 (1970)

    Google Scholar 

  13. Schoen, A.H.: Reflections concerning triply-periodic minimal surfaces. Interface Focus 2, 658–668 (2012). http://dx.doi.org/10.1098/rsfs.2012.0023

    Google Scholar 

  14. Karcher, H., Polthier, K.: Construction of triply periodic minimal surfaces. Philos. Trans. Roy. Soc. London Ser. A 354, 2077–2104 (1996). http://dx.doi.org/10.1098/rsta.1996.0093

  15. Molnar, E.: On triply periodic minimal balance surfaces. Struct. Chem. 13, 267–275 (2002). http://dx.doi.org/10.1023/A:1015855721911

  16. Rosato, V., Celino, M., Gaito, S., Benedek, G.: Thermodynamic behavior of a carbon schwarzite. Comput. Mater. Sci. 20, 387–393 (2001). http://dx.doi.org/10.1016/S0927-0256(00)00197-X

    Google Scholar 

  17. Homyonfer, M., Feldman, Y., Margulis, L., Tenne, R.: Negative curvature in inorganic fullerene-like structure. Fullerene Sci. Tech. 6, 59–66 (1998). http://dx.doi.org/10.1080/10641229809350185

    Google Scholar 

  18. Vanderbilt, D., Tersoff, J.: Negative-curvature fullerene analog of C60. Phys. Rev. Lett. 68, 511–513 (1992). http://dx.doi.org/10.1103/PhysRevLett.68.511

    Google Scholar 

  19. Ceulemans, A., King, R.B., Bovin, S.A., Rogers, K.M., Troisi, A., Fowler, P.W.: The heptakisoctahedral group and its relevance to carbon allotropes with negative curvature. J. Math. Chem. 26, 101–123 (1999). http://dx.doi.org/10.1023/A:1019129827020

  20. King, R.B.: Chemical applications of topology and group theory.29. low density polymeric carbon allotropes based on negative curvature structures. J. Phys. Chem. 100, 15096–15104 (1996). http://dx.doi.org/10.1021/jp9613201

    Google Scholar 

  21. Delgado-Friedrichs, O.: Equilibrium placement of periodic graphs and convexity of plane tilings. Discret. Comput. Geom. 33, 67–81 (2005). http://dx.doi.org/10.1007/s00454-004-1147-x

    Google Scholar 

  22. Delgado-Friedrichs, O., O’Keeffe, M.: Identification of and symmetry computation for crystal nets. Acta Crystallogr. A 59, 351–360 (2003). http://dx.doi.org/10.1107/S0108767303012017

    Google Scholar 

  23. Naito, H.: Visualization of standard realized crystal lattices. In: Spectral Analysis in Geometry and Number Theory. Contemporary Mathematics, vol. 484, pp. 153–164. American Mathematical Society, Providence (2009). http://dx.doi.org/10.1090/conm/484/09472

  24. Sunada, T.: Crystals that nature might miss creating. Notices Am. Math. Soc. 55, 208–215 (2008). Correction: ”Crystals that nature might miss creating”, ibid. 55, 343 (2008)

    Google Scholar 

  25. Hyde, S.T., Ramsden, S.: Polycontinuous morphologies and interwoven helical networks. Europhys. Lett. 50, 135–141 (2000). http://dx.doi.org/10.1209/epl/i2000-00245-y

    Google Scholar 

  26. Hyde, S.T., O’Keeffe, M., Proserpio, D.M.: A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics. Angew. Chem. Int. Edit. 47, 7996–8000 (2008). http://dx.doi.org/10.1002/anie.200801519

    Google Scholar 

  27. Itoh, M., Kotani, M., Naito, H., Sunada, T., Kawazoe, Y., Adschiri, T.: New metallic carbon crystal. Phys. Rev. Lett. 102, 055703 (2009). http://dx.doi.org/10.1103/PhysRevLett.102.055703

  28. Delgado-Friedrichs, O., O’Keeffe, M.O., Yaghi, O.M.: Three-periodic nets and tilings: semiregular nets. Acta Crystallogr. A 59, 515–525 (2003). http://dx.doi.org/10.1107/S0108767303017100

    Google Scholar 

  29. Conway, J.H., Huson, D.H.: The orbifold notation for two-dimensional groups. Struct. Chem. 13, 247–257 (2002). http://dx.doi.org/10.1023/A:1015851621002

  30. Australian National University: EPINET Project. http://epinet.anu.edu.au/

  31. Ramsden, S.J., Robins, V., Hyde, S.T.: Three-dimensional Euclidean nets from two-dimensional hyperbolic tilings: kaleidoscopic examples. Acta Crystallogr. A 65, 81–108 (2009). http://dx.doi.org/10.1107/S0108767308040592

    Google Scholar 

  32. Park, S., Kittimanapun, K., Ahn, J.S., Kwon, Y.-K., Tománek, D.: Designing rigid carbon foams. J. Phys. Condens. Matter 22 (2010). http://dx.doi.org/10.1088/0953-8984/22/33/334220

    Google Scholar 

  33. Schroder, G.E., Ramsden, S.J., Christy, A.G., Hyde, S.T.: Medial surfaces of hyperbolic structures. Eur. Phys. J. B 35, 551–564 (2003). http://dx.doi.org/10.1140/epjb/e2003-00308-y

  34. Spagnolatti, I., Bernasconi, M., Benedek, G.: Electron-phonon interaction in carbon schwarzites. Eur. Phys. J. B 32, 181–187 (2003). http://dx.doi.org/10.1140/epjb/e2003-00087-5

    Google Scholar 

  35. Müller, C., Wallner, J.: Oriented mixed area and discrete minimal surfaces. Discret. Comput. Geom. 43, 303–320 (2010). http://dx.doi.org/10.1007/s00454-009-9198-7

    Google Scholar 

  36. Bobenko, A.I., Pottmann, H., Wallner, J.: A curvature theory for discrete surfaces based on mesh parallelity. Math. Ann. 348, 1–24 (2010). http://dx.doi.org/10.1007/s00208-009-0467-9

    Google Scholar 

  37. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics III. Mathematics and Visualization, pp. 35–57. Springer, Berlin (2003)

    Google Scholar 

  38. Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992). http://dx.doi.org/10.1063/1.107080

    Google Scholar 

  39. Matsuno, T., Naito, H., Hitosugi, S., Sato, S., Kotani, M., Isobe, H.: Geometric measures of finite carbon nanotube molecules: a proposal for length index and filling indexes. Pure Appl. Chem. 86, 489–495 (2014). http://dx.doi.org/10.1515/pac-2014-5006

    Google Scholar 

  40. Naito, H.: Chemistry and mathematics – discrete geometry and carbon structures. Mathe. Sci. (SUURI KAGAKU) 624, 42–47 (2015). SAIENSU-SHA CO., LTD., (in Japanese)

    Google Scholar 

Download references

Acknowledgements

The author gratefully thanks to Prof. Davide M. Proserpio who informed us about articles on this subject and that 6-1-2-P is almost the same structure as C152 in [32]. The author also thanks Professor Motoko Kotani and Professor Yasumasa Nishiura. They gave the author an opportunity to talk at the Symposium “Mathematical Challenge to a New Phase of Materials Science” in Kyoto, 2014. The author was partially supported by Grants-in-Aid for Scientific Research (C) 40211411 and (A) 15H02055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Naito .

Editor information

Editors and Affiliations

Appendix: Indexes of Single Wall Nanotubes

Appendix: Indexes of Single Wall Nanotubes

We summarize the geometric structure of single wall nanotubes (SWNTs). Mathematically, a SWNT is considered as the fundamental region of the \(\mathbb{Z}\)-action on the standard realization of the hexagonal lattice. In the followings, we explain the geometric structures of SWNTs.

First, we define

$$\displaystyle{\begin{array}{ll} &\boldsymbol{v}_{0} = (0,0),\quad \boldsymbol{v}_{1} = (-\sqrt{3}/2,1/2),\quad \boldsymbol{v}_{2} = (\sqrt{3},1/2),\quad \boldsymbol{v}_{3} = (0,-1), \\ &\boldsymbol{a}_{1} = \boldsymbol{v}_{2} -\boldsymbol{v}_{1} = (\sqrt{3},0),\quad \boldsymbol{a}_{2} = \boldsymbol{v}_{3} -\boldsymbol{v}_{1} = (\sqrt{3}/2,-3/2), \end{array} }$$

then the graph X 0 = (V 0, E 0), \(V _{0} =\{ \boldsymbol{v}_{i}\}_{i=0}^{3}\), \(E_{0} =\{ (\boldsymbol{v}_{0},\boldsymbol{v}_{i})\}_{i=1}^{3}\) is the fundamental region of the hexagonal lattice, and \(\{\boldsymbol{a}_{1},\boldsymbol{a}_{2}\}\) is the basis of the parallel transformations (see Fig. 7). Here, the angle between \(\boldsymbol{a}_{1}\) and \(\boldsymbol{a}_{2}\) is π∕3. By using the basis, we may write all vertices \(\boldsymbol{v}\) of the hexagonal lattice as

$$\displaystyle{\boldsymbol{v} =\alpha _{1}\boldsymbol{a}_{1} +\alpha _{2}\boldsymbol{a}_{2},\quad (\alpha _{1},\alpha _{2}) \in \mathbb{Z} \times \mathbb{Z},\quad \text{or}\quad (\alpha _{1},\alpha _{2}) \in (\mathbb{Z} - 1/3) \times (\mathbb{Z} - 1/3).}$$
Fig. 7
figure 7

Configuration of the single-wall carbon nanotube, with \(\boldsymbol{c} = (6,3)\) and \(\boldsymbol{t} = (4,-5)\)

Definition

The vector \(\boldsymbol{c} = c_{1}\boldsymbol{a}_{1} + c_{2}\boldsymbol{a}_{2}\) is called the chiral vector and (c 1, c 2) is called the chiral index if and only if the SWNT is constructed from the hexagonal lattice by identifying \(\boldsymbol{x}\) and \(\boldsymbol{x} + \boldsymbol{c}\).

The vector \(\boldsymbol{t} = t_{1}\boldsymbol{a}_{1} + t_{2}\boldsymbol{a}_{2}\), where \((t_{1},t_{2}) = ((c_{1} + 2c_{2})/d(c),-(2c_{1} + c_{2})/d(\boldsymbol{c}))\), and \(d(\boldsymbol{c}) =\gcd (c_{1} + 2c_{2},2c_{1} + c_{2})\), is called the lattice vector of the SWNT with chiral index \(\boldsymbol{c} = (c_{1},c_{2})\) (see Fig. 7).

The chiral vector indicates the direction of the circle of the SWNT, and is the period vector of the \(\mathbb{Z}\)-action on the hexagonal lattice. The chiral vector is orthogonal to the lattice vector, and the lattice vector is the minimum period of the hexagonal lattice along the tube axis of the SWNT. The circumference \(L(\boldsymbol{c})\) of the SWNT is derived from the chiral index by \(L(\boldsymbol{c}) = \vert \boldsymbol{c}\vert = \sqrt{3(c_{1 }^{2 } + c_{2 }^{2 } + c_{1 } c_{2 } )}.\)  The electronic properties of single wall carbon nanotubes depends on the chiral index (see [38]).

Next, let us consider finite length single wall nanotubes. More precisely, consider a finite length SWNT, which terminates at the vertices (atoms) with \(\boldsymbol{x}_{0} = \boldsymbol{0}\) and \(\boldsymbol{x}_{1} =\alpha _{1}\boldsymbol{a}_{1} +\alpha _{2}\boldsymbol{a}_{2}\), and characterize the length of this SWNT by α 1 and α 2. In the followings, \(\mathop{\mathrm{SWNT}}\limits (\boldsymbol{c},\alpha _{1}\boldsymbol{a}_{1} +\alpha _{2}\boldsymbol{a}_{2})\) denotes the SWNT which is terminated by \(\boldsymbol{0}\) and \(\alpha _{1}\boldsymbol{a}_{1} +\alpha _{2}\boldsymbol{a}_{2}\) and whose chiral vector is \(\boldsymbol{c}\). It is easy to show that the length of \(\mathop{\mathrm{SWNT}}\limits (\boldsymbol{c},\boldsymbol{x})\) is \(\left \vert \langle \boldsymbol{x},\boldsymbol{e}_{t}\rangle \right \vert\), where \(\boldsymbol{e}_{t} = \boldsymbol{t}/\vert \boldsymbol{t}\vert\). In [39], we define the length index \(\ell(\boldsymbol{c},\boldsymbol{x})\) of \(\mathop{\mathrm{SWNT}}\limits (\boldsymbol{c},\boldsymbol{x})\) as

$$\displaystyle{\ell(\boldsymbol{c},\boldsymbol{x}) = \left \vert \langle \boldsymbol{x},\boldsymbol{e}_{t}\rangle \right \vert /\sqrt{3} = \frac{\sqrt{3}\vert c_{2}\alpha _{1} - c_{1}\alpha _{2}\vert } {2\sqrt{c_{1 }^{2 } + c_{2 }^{2 } + c_{1 } c_{2}}},\quad \boldsymbol{x} =\alpha _{1}\boldsymbol{a}_{1} +\alpha _{2}\boldsymbol{a}_{2}.}$$

The length index corresponds to how many hexagons are arranged in the direction of the tube axis.

Now, we consider \(\mathop{\mathrm{SWNT}}\limits (\boldsymbol{c},\boldsymbol{t})\), which has the canonical length for the given chiral index \(\boldsymbol{c}\). By using the definition of \(\boldsymbol{t}\), we obtain the length index \(\ell(\boldsymbol{c},\boldsymbol{t})\) of \(\mathop{\mathrm{SWNT}}\limits (\boldsymbol{c},\boldsymbol{t})\) as

$$\displaystyle{\ell(\boldsymbol{c},\boldsymbol{x}) = \frac{\sqrt{3(c_{1 }^{2 } + c_{2 }^{2 } + c_{1 } c_{2 } )}} {d(\boldsymbol{c})} = \frac{L(\boldsymbol{c})} {d(\boldsymbol{c})},}$$

and its area as

$$\displaystyle{\mathop{\mathrm{Area}}\limits (\mathop{\mathrm{SWNT}}\limits (\boldsymbol{c},\boldsymbol{t})) = \sqrt{3}\ell(\boldsymbol{c},\boldsymbol{t})L(\boldsymbol{c}) = \frac{\sqrt{3}L(\boldsymbol{c})} {d(\boldsymbol{c})}.}$$

Finally, we calculate the number of hexagons in the fundamental region of \(\mathop{\mathrm{SWNT}}\limits (\boldsymbol{c},\boldsymbol{t})\), which is the fundamental region of action generated by the lattice \(\{\boldsymbol{c},\boldsymbol{t}\}\). Since all hexagons in the lattice are congruent and their volume are \(3\sqrt{3}/2\), the fundamental region contains F hexagons, where

$$\displaystyle{ F = \frac{2L(\boldsymbol{c})^{2}} {3d(\boldsymbol{c})}. }$$
(11)

Combining ( 2) and ( 11), we obtain the number of vertices V, of edges E, and of faces F in Table 1.

Note about figures Part of Figs. 6 and 1a are gray scale version of figures published in [1]. Figures 1a, b, 4 and 6c, d of 6-1-1-P are also published in [40].

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this paper

Cite this paper

Naito, H. (2016). Construction of Negatively Curved Cubic Carbon Crystals via Standard Realizations. In: Nishiura, Y., Kotani, M. (eds) Mathematical Challenges in a New Phase of Materials Science. Springer Proceedings in Mathematics & Statistics, vol 166. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56104-0_5

Download citation

Publish with us

Policies and ethics