Advertisement

Bioelectrics pp 389-476 | Cite as

Environmental Applications, Food and Biomass Processing by Pulsed Electric Fields

  • Wolfgang Frey
  • Christian Gusbeth
  • Takashi Sakugawa
  • Martin Sack
  • Georg Mueller
  • Juergen Sigler
  • Eugene Vorobiev
  • Nikolai Lebovka
  • Ignacio Álvarez
  • Javier Raso
  • Loree C. Heller
  • Muhammad A. Malik
  • Christian Eing
  • Justin Teissie
Chapter

Abstract

Pulsed electric field (PEF) treatment is a physical method which exhibits specific advantages over conventional processing in various applications and was proven for feasibility on pilot and industrial scale. For bacterial inactivation in wastewater and liquid food and for eradication of Cyanobacteria in surface waters, PEF-based techniques are demonstrated to be energy saving and persistent in efficacy without adding harmful chemicals and in particular do not cause adverse effects to food matrices or to the aquatic environment. For component extraction, the specific advantages of PEF treatment, i.e., low heat influx, low-energy demand, and selectivity of compound release, promote PEF processing in winemaking, extraction of sugar from sugar beets and valuable components from fruits and vegetables, and PEF-downstream processing of microalgae. These promising applications of PEF processing will be introduced in more detail in the following sections.

Keywords

Bacterial inactivation Food preservation Cell component extraction Microalgae downstream processing 

Notes

Acknowledgments

The authors appreciate the support from the COST Action TD1104 (EP4Bio2Med - European network for development of electroporation-based technologies and treatments).

References

  1. 1.
    Gusbeth, C., Frey, W., Volkmann, H., Schwartz, T., Bluhm, H.: Pulsed electric field treatment for bacteria reduction and its impact on hospital wastewater. Chemosphere 75, 228–233 (2009)CrossRefGoogle Scholar
  2. 2.
    Rieder, A., Schwartz, T., Schön-Hölz, K., Marten, S.M., Süss, J., Gusbeth, C., Kohnen, W., Swoboda, W.: Molecular monitoring of inactivation efficiencies of bacteria during pulsed electric field treatment of clinical wastewater. J. Appl. Microbiol. 105, 2035–2045 (2008)CrossRefGoogle Scholar
  3. 3.
    Schwartz, T., Kohnen, W., Jansen, B., Obst, U.: Detection of antibiotic resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. Microbiologica 43, 325–335 (2003)Google Scholar
  4. 4.
    Schwartz, T., Volkmann, H., Kirchen, S., Kohnen, W., Schön-Hölz, K., Jansen, B., Obst, U.: Real-time PCR detection of Pseudomonas aeruginosa in clinical and municipal wastewater and genotyping of the ciprofloxacin-resistant isolates. FEMS Microbiol. Ecol. 57, 158–167 (2006)CrossRefGoogle Scholar
  5. 5.
    Volkmann, H., Schwartz, T., Bischoff, P., Kirchen, S., Obst, U.: Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using RealTime PCR (TaqMan). J. Microbiol. Methods 56, 277–286 (2004)CrossRefGoogle Scholar
  6. 6.
    Davies, J.: Inactivation of antibiotics and the dissemination of resistance genes. Science 264, 375–382 (1994)CrossRefGoogle Scholar
  7. 7.
    Davies, J.: Origins, Acquisition, and Dissemination of Antibiotic Resistance Determinants. Wiley, Chichester (1997)Google Scholar
  8. 8.
    Environmental Protection Agency.: Design Manual: Municipal Wastewater Disinfection. EPA/625/1-86/021. Cincinnati (1986)Google Scholar
  9. 9.
    Hülsheger, H., Pottel, J., Niemann, E.G.: Killing of bacteria with electric pulses of high field strength. Radiat. Environ. Biophys. 20, 53–65 (1981)CrossRefGoogle Scholar
  10. 10.
    Neumann, E., Rosenheck, K.: Permeability changes induced by electric impulses in vesicular membranes. J Membr. Biol 14, 194–196 (1972)Google Scholar
  11. 11.
    Min, S., Evrendilek, G.A., Zhang, H.Q.: Pulsed electric fields: processing system, microbial and enzyme inhibition, and shelf life extension of foods. IEEE Trans. Plasma Sci. 35, 59–73 (2007)CrossRefGoogle Scholar
  12. 12.
    Schoenbach, K.H., Joshi, R.P., Stark, R.H.: Bacterial decontamination of liquids with pulsed electric fields. IEEE Trans. Dielectr Electr Insul. 7, 637–645 (2000)CrossRefGoogle Scholar
  13. 13.
    Castro, A.J., Barbosa-Canovas, G.V., Swanson, B.G.: Microbial inactivation of foods by pulsed electric fields. J. Food Process Preserv. 17, 47–73 (1993)CrossRefGoogle Scholar
  14. 14.
    Guderjan, M., Elez-Martínez, P., Knorr, D.: Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innov. Food Sci. Emerg. 8, 55–62 (2007)CrossRefGoogle Scholar
  15. 15.
    Heinz, V., Alvarez, L., Angersbach, A., Knorr, D.: Preservation of liquid foods by high intensity pulsed electric fields-basic concepts for process design. Trends Food Sci. Technol. 12, 103–111 (2002)CrossRefGoogle Scholar
  16. 16.
    Rivas, A., Rodrigo, D., Martínez, A., Barbosa-Cánovas, G.V., Rodrigo, M.: Effect of PEF and heat pasteurization on the physical–chemical characteristics of blended orange and carrot juice. LWT Food Sci. Technol. 39, 1163–1170 (2006)CrossRefGoogle Scholar
  17. 17.
    Hamilton, W.A., Sale, A.J.H.: Effects of high electric fields on microorganisms: II. Killing of bacteria and yeast. Biochim. Biophys. Acta 148, 789–800 (1967)CrossRefGoogle Scholar
  18. 18.
    Environmental Protection Agency: Wastewater Technology Fact Sheet: Chlorine Disinfection. EPA 832-F-99-062. Office of Water, Washington, DC (1999)Google Scholar
  19. 19.
    Dietrich, J., Loge, F., Ginn, T., Basagaoglu, H.: Inactivation of particle associated microorganisms in wastewater disinfection: modelling of ozone and chlorine reactive diffusive transport in polydispersed suspensions. Water Res. 41, 2189–2201 (2007)CrossRefGoogle Scholar
  20. 20.
    Emmanuel, E., Keck, G., Blanchard, J.M., Vermande, P., Perrodin, Y.: Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Bull. Environ. Contam. Toxicol. 30, 891–900 (2004)Google Scholar
  21. 21.
    Environmental Protection Agency: Wastewater Technology Fact Sheet: Ozone Disinfection. EPA 832-F-99-063. Office of Water, Washington, DC (1999)Google Scholar
  22. 22.
    Sohn, J., Amy, G., Cho, J., Lee, Y., Yoon, Y.: Disinfectant decay and disinfectant by-products formation model development: chlorination and ozonation by-products. Water Res. 38, 2461–2478 (2004)CrossRefGoogle Scholar
  23. 23.
    Gordon, G., Grunwell, J.: Comparison of analytical methods for residual ozone. In: Municipal Wastewater Disinfection – Proceedings of Second National Symposium. U. S. Environmental Protection Agency. EPA-600/9-83-009: pp. 26–245 (1983)Google Scholar
  24. 24.
    Wojtenko, I., Stinson, M.K., Field, R.: Performance of ozone as a disinfectant for combined sewer overflow. Crit. Rev. Environ. Sci. Technol. 31(4), 295–309 (2001)CrossRefGoogle Scholar
  25. 25.
    Field, R.: Combined sewer overflows: control and treatment. In: Control and Treatment of Combined Sewer Overflows. Van Nostrand Reinhold, New York (1990)Google Scholar
  26. 26.
    Jacangelo, J.G., Patania, N.L., Reagan, K.M., Aieta, E.M., Krasner, S.W., McGuire, M.J.: Ozonation: assessing its role in the formation and control of disinfection by-products. Res. Technol. J. Am. Water Works Assoc. 81, 74–84 (1989)Google Scholar
  27. 27.
    White, C.: Handbook of Chlorination and Alternative Disinfectants, 4th edn. Wiley, New York (1999)Google Scholar
  28. 28.
    Martin, S., Gagnon, T., Gagnon, G.A.: Impact of ozonation on water quality in marine recirculation systems. Aquac. Eng. 29, 125–137 (2003)CrossRefGoogle Scholar
  29. 29.
    Venosa, A.D., Meckes, C.M.: Control of ozone disinfection by exhaust gas monitoring. In: Municipal Wastewater Disinfection – Proceedings of Second National Symposium. U. S. Environmental Protection Agency. EPA-600/9-83-009: pp. 246–254 (1983)Google Scholar
  30. 30.
    Environmental Protection Agency: Wastewater Technology Fact Sheet: Ultraviolet Disinfection. EPA 832-F-99-064. Office of Water, Washington, DC (1999)Google Scholar
  31. 31.
    Jungfer, C., Schwartz, T., Obst, U.: UV-induced dark repair mechanisms in bacteria associated with drinking water. Water Res. 41, 188–196 (2007)CrossRefGoogle Scholar
  32. 32.
    Environmental Protection Agency.: Wastewater Treatment by Pulsed Electric Field Processing, Washington, DC (2003)Google Scholar
  33. 33.
    Tokuşoğlu, Ö., Swanson, B.G.: Improving food quality with novel food processing technologies. CRC Press, ISBN 9781466507241 (2014)Google Scholar
  34. 34.
    Codd, G.A., Bell, S.G., Kay, K., Ward, C.J., Metcalef, J.S.: Cyanobacterial toxins, exposure routes and human health. Eur. J. Phycol. 34(04), 405–415 (1999)CrossRefGoogle Scholar
  35. 35.
    Gaudreau, M., Hawkey, T., Kempkes, M., Petry, J.: Scale up of PEF systems for food and waste streams. Proceedings of the 3rd Innovative Food Centre Conference, Bedford (2006)Google Scholar
  36. 36.
    Kotnik, T., Mir, L.M., Flisar, K., Puc, M., Miklavčič, D.: Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses: part I. Increased efficiency of permeabilization. Bioelectrochemistry 54, 83–90 (2001)CrossRefGoogle Scholar
  37. 37.
    Kotnik, T., Miklavčič, D., Mir, L.M.: Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses: part II. Reduced electrolytic contamination. Bioelectrochemistry 54, 91–95 (2001)CrossRefGoogle Scholar
  38. 38.
    Frey, W., Gusbeth, C., Schwartz, T.: Inactivation of Pseudomonas putida by pulsed electric field treatment: a study on the correlation of treatment parameters and inactivation efficiency in the short-pulse range. J. Membr. Biol. 246(10), 769–781 (2013)CrossRefGoogle Scholar
  39. 39.
    Wouters, P.C., Alvarez, I., Raso, J.: Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends Food Sci. Technol. 12, 112–121 (2001)CrossRefGoogle Scholar
  40. 40.
    Wouters, P.C., Bos, A.P., Ueckert, J.: Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields. Appl. Environ. Microbiol. 67, 3092–3101 (2001)CrossRefGoogle Scholar
  41. 41.
    Jolibois, B., Guerbet, M.: Evaluation of industrial, hospital and domestic wastewater genotoxicity with the Salmonella fluctuation test and the SOS chromotest. Mutat. Res. 565, 151–162 (2005)CrossRefGoogle Scholar
  42. 42.
    Gusbeth, C., Frey, W., Schwartz, T., Rieder, A.: Critical comparison between the pulsed electric field and thermal decontamination methods of hospital wastewater. Acta Phys. Pol. A 115, 1092–1094 (2009)CrossRefGoogle Scholar
  43. 43.
    Davison, J.: Genetic exchange between bacteria in environment. Plasmid 42, 73–91 (1999)CrossRefGoogle Scholar
  44. 44.
    Volkmann, H., Schwartz, T., Kirchen, S., Stofer, C., Obst, U.: Evaluation of inhibition and cross-reaction effects on real-time PCR applied to the total DNA of wastewater samples for the quantification of bacterial antibiotic resistance genes and taxon-specific targets. Mol. Cell. Probes 21, 125–133 (2007)CrossRefGoogle Scholar
  45. 45.
    Zhang, H.Q., Barbosa-Cánovas, G.V., Balasubramaniam, V.M., Dunne, C.P., Farkas, D.F., Yuan, J.T.C.: Pulsed Electric Field Processing Nonthermal Processing Technologies for Food. Blackwell Publishing Ltd. ISBN: 978-0-813-81668-5 (2011)Google Scholar
  46. 46.
    Zhang, G., Zhang, P., Liu, H., Wang, B.: Ultrasonic damages on cyanobacterial photosynthesis. Ultrason. Sonochem. I3(6), 501–505 (2006)CrossRefGoogle Scholar
  47. 47.
    Akiyama, H., Sakugawa, T., Namihira, T., Takaki, K., Minamitani, Y., Shimomura, N.: Industrial applications of pulsed power technology. IEEE Trans. Dielectr. Electr. Insul. 14(5), 1051–1064 (2007)CrossRefGoogle Scholar
  48. 48.
    Sakugawa, T., Aoki, N., Akiyama, H., Ishibashi, K., Watanabe, M., Kouda, A., Suematsu, K.: A method of cyanobacteria treatment using underwater streamer-like discharge. IEEE Trans. Plasma Sci. 42(3), 794–798 (2014)CrossRefGoogle Scholar
  49. 49.
    Gnapowski, S., Akiyama, H., Sakugawa, T., Akiyama, M.: Effect of pulse power discharges in water on algae treatment. IEEJ Trans. Fundam. Mater 133(4), 198–204 (2013)CrossRefGoogle Scholar
  50. 50.
    Choi, J., Yamaguchi, T., Yamamoto, K., Namihira, Sakugawa, T., Katsuki, S., Akiyama, H.: Feasibility studies of EMTP simulation for the design of the pulsed-power generator using MPC and BPFN for water treatments. IEEE Trans. Plasma Sci. 34(5), 1744–1750 (2006)CrossRefGoogle Scholar
  51. 51.
    Li, Z., Ohno, T., Sato, H., Sakugawa, T., Akiyama, H., Kunitomo, S., Sasaki, K., Ayukawa, M., Fujiwara, H.: A method of water-bloom prevention using underwater pulsed streamer discharge. J. Environ. Sci. Health Part A 43, 529–551 (2008)CrossRefGoogle Scholar
  52. 52.
    Akiyama, H., Sakai, S., Sakugawa, T., Namihira, T.: Environmental applications of repetitive pulsed power. IEEE Trans. Dielectr. Electr. Insul. 14(4), 825–833 (2007)CrossRefGoogle Scholar
  53. 53.
    Sakugawa, T., Yamaguchi, T., Yamamoto, K., Kiyan, T., Namihira, Katsuki, S., Akiyama, H.: All solid state pulsed power system for water discharge. Proceedings of IEEE International Pulsed Power Conference 2005, pp. 1057–1060 (2006)Google Scholar
  54. 54.
    Akiyama, H., Li, Z., Ohno, T., Lin, X. F., Sato, H., Namihira, Sakugawa, T., Katsuki, S., Ayukawa, M., Fujiwara, H., Kunitomo, S., Sasaki, K.: Water-bloom treatment by underwater pulsed streamer-like discharges. Proceedings of IEEE International Pulsed Power Conference 2007, pp. 324–327 (2007)Google Scholar
  55. 55.
    Eshtiaghi, M.N., Knorr, D.: High electric field pulse pretreatment: potential for sugar beet processing. J. Food Eng. 52, 265–272 (2002)CrossRefGoogle Scholar
  56. 56.
    Schultheiss, C., Bluhm, H., Mayer, H.G.: Processing of sugar beets with pulsed electric fields. 2nd Symp. Nonthermal/Medical/Biological Treatments using Electromagnetic Fields and Ionized Gases, Portsmouth, Va., May 21–23, (2001)Google Scholar
  57. 57.
    Frenzel, S., Michelberger Th., Arnold J., Bluhm H., Sack M., Kern M.: Entwicklung und Bau einer Elektroimpuls-Pilotanlge zum nicht-thermischen Aufschluss pflanzlicher Zellen zur Schonung von Energieressourcen am Beispiel der Zuckerindustrie, Abschlussbericht, Fkz. 0330434, TIB-Hannover, (2005)Google Scholar
  58. 58.
    Arnold, J., Frenzel, S., Michelberger, Th., Scheuer, T.: Extraktion von Inhaltsstoffen aus Rübenschnitzeln, Patentschrift DE 10 2004 028 782 B4, Anmeldetag 16.06.2004.Google Scholar
  59. 59.
    Jemai, A.B., Vorobiev, E.: Pulsed electric field assisted pressing of sugar beet slices: towards a novel process of cold juice extraction. Biosyst. Eng. 93(1), 57–68 (2006). doi: 10.1016/j.biosystemseng.2005.09.008 CrossRefGoogle Scholar
  60. 60.
    Mhemdi, H., Bals, O., Grimi, N., Vorobiev, E.: Alternative pressing/ultrafiltration process for sugar beet valorization: impact of pulsed electric field and cossettes preheating on the qualitative characteristics of juices. Food Bioprocess. Technol. 7, 795–805 (2014). doi: 10.1007/s11947-013-1103-y CrossRefGoogle Scholar
  61. 61.
    Morren, J., Roodenburg, B., De Haan, S.W.H.: Electrochemical reactions and electrode corrosion in pulsed electric field (PEF) treatment chambers. Innov. Food Sci. Emerg. Technol. 4(2003), 285–295 (2003)CrossRefGoogle Scholar
  62. 62.
    Donsi, F., Ferrari, G., Fruilo, M., Pataro, G.: Pulsed electric field-assisted vinification of aglianico and piedirosso grapes. J. Agric. Food Chem. 58, 11606–11615 (2010). doi: 10.1021/jf102065v CrossRefGoogle Scholar
  63. 63.
    Grimi, N., Lebovka, N.I., Vorobiev, E., Vaxelaire, J.: Effect of a pulsed electric field treatment on expression behavior and juice quality of chardonnay grape. Food Biophys. 4, 191–198 (2009). doi: 10.1007/s11483-009-9117-8 CrossRefGoogle Scholar
  64. 64.
    Sigler, J., Schultheiss, C., Kern, M.: Maischeporation – ein neuer Weg der Weinbereitung. Schweiz. Z. Obstet. Weinbau 16, 14–16 (2005)Google Scholar
  65. 65.
    Sigler, J., Sack, M., Eing, C., Müller, G., Waidelich, G.: Elektroporation zum verbesserten Aufschluss von Trauben und Maische. Intervitis Interfructa : Internat. Technologiemesse für Wein, Obst, Fruchtsaft und Spirituosen, Stuttgart, 24.-28.März 2010Google Scholar
  66. 66.
    Sigler, J., Schultheiss, C., Mayer, H.G., Kern, M.: Zellporation in der Weinbereitung. INTERVINIS – INTERFRUCTA 2004 : Internat. Technologiemesse für Wein, Obst und Fruchtsaft, Stuttgart, 11.-15.Mai 2004Google Scholar
  67. 67.
    Sack, M., Sigler, J., Stukenbrock, L., Eing, C., Mueller, G.: Lab-scale experiments on PEF-treatment of grape mash at different pulse parameters. 4th Euro-Asian Pulsed Power Conf. (EAPPC 2012), 19th Internat.Conf.on High-Power Particle Beams (BEAMS 2012), Karlsruhe, September 30–October 4, 2012Google Scholar
  68. 68.
    Sack, M., Sigler, J., Stukenbrock, L., Eing, C., Mueller, G.: On the variation of pulse parameters for PEF treatment of grape mash. Proc.of the Internat.Conf.on Bio and Food Electrotechnologies (BFE 2012), Fisciano, I, September 26-28, 2012, Salerno : ProdAl S.c.a.r.l, 2012 S.223–227Google Scholar
  69. 69.
    Schmidt, O.., Schick, A., Sack, M., Sigler, J.: Sesam öffne Dich – Elektroporation von Trauben, das deutsche weinmagazin • 6/24. März 2012Google Scholar
  70. 70.
    Redondo, L.M., Andrade, J., Santos, J.O., Barros, F., Pereira, M.T.: Industrial processing of red and white grapes assisted by Pulsed Electric Fields, Proc. EAPPC 2012, Karlsruhe, 30.9.-04.10.2012Google Scholar
  71. 71.
    Müller, G., Frey, W., Sack, M., Schultheiss, C., Mayer, H.-G., Sigler, J., Kern, M., Günther, U.: Karlsruher Elektroporationsanlage KEA – Die Erfolgsgeschichte eines Technologietransfers in die Industrie, NACHRICHTEN – Forschungszentrum Karlsruhe Jahrg. 39 3/2007 S. 153–158 (2007)Google Scholar
  72. 72.
    Sack, M., Müller, G.: Optimisation of an electroporation device for mash. Cernat, M. [Hrsg.] Proc.of the 11th Internat.Conf.on Optimization of Electrical and Electronic Equipment (OPTIM ‘08), Brasov, R, May 22–24, (2008)Google Scholar
  73. 73.
    Sack, M., Schultheiss, C., Bluhm, H.: Triggered Marx generators for the industrial scale electroporation of sugar beets. IEEE Trans. Ind. Appl. 41, S.707–S.714 (2005). doi: 10.1109/TIA.2005.847307 CrossRefGoogle Scholar
  74. 74.
    Sack, M., Attmann, F., Müller, G.: EMV-Aspekte beim Entwurf einer Elektroporationsanlage. Internat.Fachmesse und Kongress für elektromagnetische Verträglichkeit (EMV), Düsseldorf, 9.-11.März 2010Google Scholar
  75. 75.
    Sack, M., Müller, G.: Electrical design of electroporation reactorsGoogle Scholar
  76. 76.
    Yongguang Yin, Quinghua Howard Zhang, Sudhir Kartikeya Sastry: High-voltage pulsed electric field treatment chamber for the preservation of liquid food, Patent US 5 690 978, 30.Sept. 1996Google Scholar
  77. 77.
    Sack, M., Bluhm, H.: New measurement methods for an industrial-scale electroporation facility for sugar beets. IEEE Trans. Ind. Appl. 44, 1074–83 (2008). doi: 10.1109/TIA.2008.926222 CrossRefGoogle Scholar
  78. 78.
    Loginova, K.V., Vorobiev, E., Bals, O., Lebovka, N.I.: Pilot study of countercurrent cold and mild heat extraction of sugar from sugar beets, assisted by pulsed electric fields. J. Article J. Food Eng. 102(4), 340–347 (2011)CrossRefGoogle Scholar
  79. 79.
    Kseniia Loginova, Eugène Vorobiev, Nikolai Lebovka: Qualitative characteristics of sugar beet juices obtained in pilot extractor with pulsed electric field (PEF) pre-treatment. 11th International Congress on Engineering and Food (ICEF), May 22–26, 2011 Athens GreeceGoogle Scholar
  80. 80.
    Angersbach, A., Heinz, V., Knorr, D.: Electrophysical model of interact and processed plant tissues: Cell disintegration criteria. Biotechnol. Prog. 15(1999), 753–762 (1999)CrossRefGoogle Scholar
  81. 81.
    Raso, J., Heinz, V. (eds.): Pulsed Electric Field Technology for the Food Industry. Fundamentals and Applications. Springer, New York (2006)Google Scholar
  82. 82.
    Vorobiev, E.I., Lebovka, N.I. (eds.): Electrotechnologies for Extraction from Food Plants and Biomaterials. Springer, New York (2008)Google Scholar
  83. 83.
    Knorr, D., Engel, K.-H., Vogel, R., Kochte-Clemens, B., Eisenbrand, G.: Mol. Nutr. Food Res. 52, 1539 (2008)CrossRefGoogle Scholar
  84. 84.
    Barbosa-Canovas, G.V., Gongora-Nieto, M.M., Pothakamury, U.R., Swanson, B.G.: Preservation of Foods with Pulsed Electric Fields. Academic, London (1998)Google Scholar
  85. 85.
    Lebovka, N., Vorobiev, E., In: Pakhomov, A.G., Miklavcic, D., Markov, M.S. (eds.) CRC Press, pp. 463–490 (2010)Google Scholar
  86. 86.
    Vorobiev, E.I., Lebovka, N.I. In: Lebovka, N., Vorobiev, E., Chemat, F. (eds.) CRC Press, Taylor & Francis LLC,, pp. 25–83 (2011)Google Scholar
  87. 87.
    Ben Ammar, J.: Etude De L’effet Des Champs Electriques Pulses Sur La Congelation Des Produits Vegetaux. Universite de Technologie de Compiegne, France, Compiegne (2011)Google Scholar
  88. 88.
    Shynkaryk, M.: Influence De La Permeabilisation Membranaire Par Champ Electrique Sur La Performance De Sechage Des Vegetaux. Universite de Technologie de Compiegne, France, Compiegne (2006)Google Scholar
  89. 89.
    Bazhal, M.: Etude Du Mécanisme D’électropermeabilisation Des Tissus Végétaux. Application à L’extraction Du Jus Des Pommes. Universite de Technologie de Compiegne, France, Compiegne (2001)Google Scholar
  90. 90.
    Grimi, N.: Vers L’intensification Du Pressage Industriel Des Agroressources Par Champs Electriques Pulses: Etude Multi-echelles. Universite de Technologie de Compiegne, France, Compiegne (2009)Google Scholar
  91. 91.
    Praporscic, I.: Influence Du Traitement Combine Par Champ Electrique Pulse Et Chauffage Modere Sur Les Proprietes Physiques Et Sur Le Comportement Au Pressage De Produits Vegetaux. Universite de Technologie de Compiegne, France, Compiegne (2005)Google Scholar
  92. 92.
    Chalermchat, Y., Malangone, L., Dejmek, P.: Biosyst. Eng. 105(3), 357 (2010)CrossRefGoogle Scholar
  93. 93.
    Toepfl, S.: Pulsed Electric Fields (PEF) for Permeabilization of Cell Membranes in Food- and Bioprocessing – Applications, Process and Equipment Design and Cost Analysis, Institut für Lebensmitteltechnologie und Lebensmittelchemie, (2006)Google Scholar
  94. 94.
    Turk, M.: Vers Une Amelioration Du Procede Industriel D’extraction Des Fractions Solubles De Pommes à L’aide De Technologies Electriques. Universite de Technologie de Compiegne, France, Compiegne (2010)Google Scholar
  95. 95.
    der Poel, P.W., Schiweck, H., Schwartz, T.: Sugar Technology: Beet and Cane Sugar Manufacture, p. 1118. Verlag Dr Albert Bartens KG, Berlin (1998)Google Scholar
  96. 96.
    Bouzrara, H., Vorobiev, E.I.: Int. Sugar J. 102(1216), 194 (2000)Google Scholar
  97. 97.
    Bouzrara, H., Vorobiev, E.I.: Zucker 126, 463 (2001)Google Scholar
  98. 98.
    Bouzrara, H., Vorobiev, E.I.: Chem. Eng. Process: Process Intensification 42, 249 (2003)CrossRefGoogle Scholar
  99. 99.
    Eshtiaghi, M. N., Knorr, D. (1999)Google Scholar
  100. 100.
    Jemai, A.B., Vorobiev, E.: J. Food Eng. 59, 405 (2003)CrossRefGoogle Scholar
  101. 101.
    Jemai, A.B., Vorobiev, E.: Biosyst. Eng. 93, 57 (2006)CrossRefGoogle Scholar
  102. 102.
    El-Belghiti, K., Vorobiev, E.I.: Food Bioprod. Process. 82, 226 (2004)CrossRefGoogle Scholar
  103. 103.
    El-Belghiti, K., Rabhi, Z., Vorobiev, E.: J. Sci. Food Agric. 85, 213 (2005)CrossRefGoogle Scholar
  104. 104.
    El-Belghiti, K., Rabhi, Z., Vorobiev, E.: J. Food Process Eng. 28, 346 (2005)CrossRefGoogle Scholar
  105. 105.
    El-Belghiti, K.: Effets D’un Champ Électrique Pulsé Sur Le Transfert De Matière Et Sur Les Caractéris-tiques Végétales. Universite de Technologie de Compiegne, France, Compiegne (2005)Google Scholar
  106. 106.
    Lopez, N., Puertolas, E., Condon, S., Raso, J., Alvarez, I.: LWT Food Sci. Technol. 42, 1674 (2009)CrossRefGoogle Scholar
  107. 107.
    Vorobiev, E.I., Jemai, A.B., Bouzrara, H., Lebovka, N.I., Bazhal, M.I.: In: Barbosa-Canovas, G., Tapia, M.S., Cano, M.P. (eds.) Novel Food Processing Technologies, pp. 105–130. CRC Press, New York (2005)Google Scholar
  108. 108.
    Lebovka, N.I., Shynkaryk, M.V., El-Belghiti, K., Benjelloun, H., Vorobiev, E.: J. Food Eng. 80, 639 (2007)CrossRefGoogle Scholar
  109. 109.
    Loginova, K., Loginov, M., Vorobiev, E., Lebovka, N.I.: J. Food Eng. 106, 144 (2011)CrossRefGoogle Scholar
  110. 110.
    Loginov, M., Loginova, K., Lebovka, N., Vorobiev, E.: J. Membr. Sci. 377, 273 (2011)CrossRefGoogle Scholar
  111. 111.
    Loginova, K., Loginov, M., Vorobiev, E., Lebovka, N.I.: LWT Food Sci. Technol. 46, 371 (2012)CrossRefGoogle Scholar
  112. 112.
    K. Loginova (Sereda), Mise En Oeuvre De Champs Electriques Pulses Pour La Conception D’un Procede De Diffusion a Froid a Partir De Betteraves a Sucre Et D’autres Tubercules Alimentaires (etude Multi-echelle), Compiegne: Universite de Technologie de Compiegne, France, (2011)Google Scholar
  113. 113.
    Lopez, N., Puertolas, E., Condon, S., Alvarez, I.: J. Food Eng. 90, 60 (2009)CrossRefGoogle Scholar
  114. 114.
    Loginova, K.V., Lebovka, N.I., Vorobiev, E.: J. Food Eng. 106, 127 (2011)CrossRefGoogle Scholar
  115. 115.
    Shynkaryk, M.V., Lebovka, N.I., Vorobiev, E.: Drying Technol. 26, 695 (2008)CrossRefGoogle Scholar
  116. 116.
    Loginova, K.V., Shynkaryk, M.V., Lebovka, N.I., Vorobiev, E.: J. Food Eng. 96, 374 (2010)CrossRefGoogle Scholar
  117. 117.
    Abdullah, S.H., Zhao, S., Mittal, G.S., Baik, O.-D.: Sep. Purif. Technol. 93, 92 (2012)CrossRefGoogle Scholar
  118. 118.
    Lim, J.H., Shim, J.M., Lee, D.U., Kim, Y.H., Park, K.-J.: Korean J. Food Sci. Technol. 44, 704 (2012)CrossRefGoogle Scholar
  119. 119.
    El Darra, N., Grimi, N., Vorobiev, E., Louka, N., Maroun, R.: Food Bioprocess Technol. 6, 1281 (2013)CrossRefGoogle Scholar
  120. 120.
    Puertolas, E., Lopez, N., Condon, S., Alvarez, I., Raso, J.: Trends Food Sci. Technol. 21(5), 247 (2010)CrossRefGoogle Scholar
  121. 121.
    El Darra, N., Grimi, N., Maroun, R.G., Louka, N., Vorobiev, E.: Eur. Food Res. Technol. 236, 47 (2013)CrossRefGoogle Scholar
  122. 122.
    Delsart, C., Ghidossi, R., Poupot, C., Cholet, C., Grimi, N., Vorobiev, E., Milisic, V., Peuchot, M.M.: Am. J. Enol. Vitic. 63, 205 (2012)CrossRefGoogle Scholar
  123. 123.
    Nakagawa, A., Hatayama, H., Takaki, K., Koide, S., Kawamura, Y.: IEEJ Trans. Fundam. Mater. 133, 32 (2013)CrossRefGoogle Scholar
  124. 124.
    Cholet, C., Delsart, C., Petrel, M., Gontier, E., Grimi, N., L’Hyvernay, A., Ghidossi, R., Vorobiev, E., Mietton-Peuchot, M., Gény, L.: J. Agric. Food Chem. 62, 2925 (2014)CrossRefGoogle Scholar
  125. 125.
    Delsart, C., Cholet, C., Ghidossi, R., Grimi, N., Gontier, E., Gény, L., Vorobiev, E., Mietton-Peuchot, M.: Food Bioprocess Technol. 7(2), 424 (2014)CrossRefGoogle Scholar
  126. 126.
    Boussetta, N., Vorobiev, E., Le, L.H., Cordin-Falcimaigne, A., Lanoisellé, J.-L.: LWT Food Sci. Technol. 46, 127 (2012)CrossRefGoogle Scholar
  127. 127.
    El Darra, N., Grimi, N., Vorobiev, E., Maroun, R.G., Louka, N.: Am. J. Enol. Vitic. 64, 476 (2013)CrossRefGoogle Scholar
  128. 128.
    Luengo, E., Franco, E., Ballesteros, F., Álvarez, I., Raso, J.: Food Bioprocess Technol. 7, 1457 (2014)CrossRefGoogle Scholar
  129. 129.
    Luengo, E., Puértolas, E., López, N., Álvarez, I., Raso, J.: Stewart Postharvest Rev. 8(2), 1 (2012)CrossRefGoogle Scholar
  130. 130.
    Parniakov, O., Lebovka, N.I., Van Hecke, E., Vorobiev, E.: Food Bioprocess Technol. xx, 1 (2013)Google Scholar
  131. 131.
    Zhang, T.-H., Wang, S.-J., Liu, D.-R., Yuan, Y., Yu, Y.-L., Yin, Y.-G.: Jilin Daxue Xuebao (Gongxueban) J. Jilin Univ. Eng. Technol. Ed. 41, 882 (2011)Google Scholar
  132. 132.
    Ye, D., Zhang, L., Sun, S., Chen, J., Fang, T.: J. Food Process Eng. 37, 273 (2014)CrossRefGoogle Scholar
  133. 133.
    Chen, J., Li, Y., Sun, S., Fang, T.: Nongye Gongcheng Xuebao Trans. Chin. Soc. Agric. Eng. 30, 260 (2014)Google Scholar
  134. 134.
    Rajha, H.N., Boussetta, N., Louka, N., Maroun, R.G., Vorobiev, E.: Food Res. Int. xx, xx (2014)Google Scholar
  135. 135.
    Bai, Y., Li, C., Zhao, J., Zheng, P., Li, Y., Pan, Y., Wang, Y.: Chromatographia 76, 635 (2013)CrossRefGoogle Scholar
  136. 136.
    Bai, Y.-Z., Li, C.-Y., Zhao, J.-H., Wang, Y.-P.: Chin. Tradit. Herb. Drugs 44, 1267 (2013)Google Scholar
  137. 137.
    Pourzaki, A., Mirzaee, H., Hemmati Kakhki, A.: J. Food Process. Preserv. 37, 1008 (2013)Google Scholar
  138. 138.
    Zhao, W., Yu, Z., Liu, J., Yu, Y., Yin, Y., Lin, S., Chen, F.: J. Sci. Food Agric. 91, 2201 (2011)Google Scholar
  139. 139.
    Teh, S.-S., Niven, B.E., Bekhit, A.E.-D.A., Carne, A., Birch, E.J.: Food. Bioprocess Technol. 7(11), 3064 (2014)CrossRefGoogle Scholar
  140. 140.
    Zhao, S., Baik, O.-D., Choi, Y.J., Kim, S.-M.: Crit. Rev. Food Sci. Nutr. 54, 1283 (2014)CrossRefGoogle Scholar
  141. 141.
    Aguiló-Aguayo, I., Hossain, M.B., Brunton, N., Lyng, J., Valverde, J., Rai, D.K.: Innov. Food Sci. Emerg. Technol. 23, 79 (2014)CrossRefGoogle Scholar
  142. 142.
    Roohinejad, S., Everett, D.W., Oey, I.: Int. J. Food Sci. Technol. 49, 2120 (2014)CrossRefGoogle Scholar
  143. 143.
    Roohinejad, S., Oey, I., Everett, D.W., Niven, B.E.: Food Bioprocess Technol. 7(11), 3336 (2014)CrossRefGoogle Scholar
  144. 144.
    Jin, S., Yin, Y.: Nongye Gongcheng Xuebao Trans. Chin. Soc. Agric. Eng. 26, 368 (2010)MathSciNetGoogle Scholar
  145. 145.
    Gachovska, T., Cassada, D., Subbiah, J., Hanna, M., Thippareddi, H., Snow, D.: J. Food Sci. 75, E323 (2010)CrossRefGoogle Scholar
  146. 146.
    Schrive, L., Grasmick, A., Moussiere, S., Sarrade, S.: Biochem. Eng. J. 27, 212 (2006)CrossRefGoogle Scholar
  147. 147.
    El Zakhem, H., Lanoisellé, J.L., Lebovka, N.I., Nonus, M., Vorobiev, E.: J. Colloid Interface Sci. 300, 553 (2006)CrossRefGoogle Scholar
  148. 148.
    El Zakhem, H., Lanoiselle, J.-L., Lebovka, N.I., Nonus, M., Vorobiev, E.: Colloids Surf. B: Biointerfaces 47, 189 (2006)CrossRefGoogle Scholar
  149. 149.
    Ganeva, V., Galutzov, B., Teissié, J.: High yield electroextraction of proteins from yeast by a flow process. Anal. Biochem. 315, 77–84 (2003)CrossRefGoogle Scholar
  150. 150.
    Shynkaryk, M.V., Lebovka, N.I., Lanoisellé, J.L., Nonus, M., Bedel-Clotour, C., Vorobiev, E.: J. Food Eng. 92, 189 (2009)CrossRefGoogle Scholar
  151. 151.
    Liu, D., Lebovka, N.I., Vorobiev, E.: Food Bioprocess Technol. 6, 576 (2013)CrossRefGoogle Scholar
  152. 152.
    Jin, Y., Wang, M., Lin, S., Guo, Y., Liu, J., Yin, Y.: Afr. J. Biotechnol. 10, 19144 (2011)CrossRefGoogle Scholar
  153. 153.
    Liu, J.-B., Yu, Y.-D., Wang, M., Lin, S.-Y., Wang, Q., Gao, L.-X., Sun, P.: Jilin Daxue Xuebao (Gongxueban) J. Jilin Univ. Eng. Technol. Ed. 40, 1171 (2010)Google Scholar
  154. 154.
    Goettel, M., Eing, C., Gusbeth, C., Straessner, R., Frey, W.: Algal Res. 2, 401 (2013)CrossRefGoogle Scholar
  155. 155.
    Coustets, M., Al-Karablieh, N., Thomsen, C., Teissié, J.: Flow pProcess for eElectroextraction of tTotal pProteins from mMicroalgae. J. Membr. Biol. 246, 751–60 (2013)CrossRefGoogle Scholar
  156. 156.
    Zbinden, M.D., Sturm, B.S., Nord, R.D., Carey, W.J., Moore, D., Shinogle, H., Stagg-Williams, S.M.: Biotechnol. Bioeng. 110(6), 1605 (2013)CrossRefGoogle Scholar
  157. 157.
    Grimi, N., Dubois, A., Marchal, L., Jubeau, S., Lebovka, N.I., Vorobiev, E.: Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresour. Technol. 153, 254 (2014)CrossRefGoogle Scholar
  158. 158.
    Sheng, J., Vannela, R., Rittmann, B.E.: Environ. Sci. Tech. 45, 3795 (2011)CrossRefGoogle Scholar
  159. 159.
    Luengo, E., Condon-Abanto, S., Alvarez, I., Raso, J.: J. Membr. Biol. xx, 1 (2014)Google Scholar
  160. 160.
    Rego, D., Costa, L., Navalho, J., Paramo, J., Geraldes, V., Redondo, L.M., Pereira, M.T. In: Plasma Science (ICOPS), 2013 Abstracts IEEE International Conference On, p. 1 (2013)Google Scholar
  161. 161.
    Remenant, B., Jaffrès, E., Dousset, X., Pilet, M.F., Zagorec, M.: Bacterial spoilers of food: behavior, fitness and functional properties. Food Microbiol. 45(A), 45–53 (2015)CrossRefGoogle Scholar
  162. 162.
    Arnoldi, A.: Thermal processing and nutritional quality. In: Henry, C.J.K., Chapman, C. (eds.) The Nutrition Handbook for Food Processing, pp. 265–286. Woodhead, Cambridge (2002)CrossRefGoogle Scholar
  163. 163.
    Mackey, B.M.: Injured bacteria. In: Lund, B.M., Baird-Parker, T.C., Gould, G.W. (eds.) The Microbiological Safety and Quality of Food, pp. 1–16. Aspen Publishers, Gaithersburg (2000)Google Scholar
  164. 164.
    Aronsson, K., Rönner, U., Borch, E.: Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing. Int. J. Food Microbiol. 99, 19–32 (2005)CrossRefGoogle Scholar
  165. 165.
    Simpson, R.K., Whittington, R., Earnshaw, R.G., Russell, N.J.: Pulsed high electric field causes all or nothing membrane damage in Listeria monocytogenes and Salmonella typhimurium, but membrane H+-ATPase is not a primary target. Int. J. Food Microbiol. 48, 1–10 (1999)CrossRefGoogle Scholar
  166. 166.
    García, D., Gómez, N., Mañas, P., Condón, S., Raso, J., Pagán, R.: Pulsed electric fields cause bacterial envelopes permeabilization depending on the treatment intensity, the treatment medium pH and the microorganisms investigated. Int. J. Food Microbiol. 113, 219–217 (2006)CrossRefGoogle Scholar
  167. 167.
    Russell, N.J., Colley, M., Simpson, R.K., Trivett, A.J., Evans, R.I.: Mechanism of action of pulsed high electric field (PHEF) on the membranes of food-poisoning bacteria is an “all-or-nothing” effect. Int. J. Food Microbiol. 55, 133–136 (2000)CrossRefGoogle Scholar
  168. 168.
    García, D., Gómez, N., Mañas, P., Condón, S., Raso, J., Pagá, R.: Pulsed electric fields cause sublethal injury in Escherichia coli. Lett. Appl. Microbiol. 36, 140–144 (2003)CrossRefGoogle Scholar
  169. 169.
    García, D., Gómez, N., Mañas, P., Condón, S., Raso, J., Pagán, R.: Occurrence of sublethal injury after pulsed electric fields depending on the microorganism, the treatment medium pH and the intensity of the treatment investigated. J. Appl. Microbiol. 99, 94–104 (2005)CrossRefGoogle Scholar
  170. 170.
    García, D., Gómez, N., Mañas, P., Condón, S., Raso, J., Pagán, R.: Biosynthetic requirements for the repair of sublethal membrane damage in Escherichia coli cells after pulsed electric fields. J. Appl. Microbiol. 100, 428–435 (2006)CrossRefGoogle Scholar
  171. 171.
    Arroyo, C., Somolinos, M., Cebrián, G., Condón, S., Pagán, R.: Pulsed electric fields cause sublethal injuries in the outer membrane of Enterobacter sakazakii facilitating the antimicrobial activity of citral. Lett. Appl. Microbiol. 51, 525–531 (2010)CrossRefGoogle Scholar
  172. 172.
    García, D., Hassani, M., Mañas, P., Condón, S., Pagán, R.: Inactivation of Escherichia coli O157:H7 during the storage under refrigeration of apple juice treated by pulsed electric fields. J. Food Saf. 25, 30–42 (2005)CrossRefGoogle Scholar
  173. 173.
    Saldaña, G., Álvarez, I., Condón, S., Raso, J.: Microbiological aspects related to the feasibility of PEF technology for food pasteurization. Crit. Rev. Food Sci. Nutr. 54(11), 1415–1426 (2014)CrossRefGoogle Scholar
  174. 174.
    Jin, T.Z., Guo, M., Zhang, H.Q.: Upscaling from benchtop processing to industrial scale production: more factors to be considered for pulsed electric field food processing. J. Food Eng. 146, 72–80 (2015)CrossRefGoogle Scholar
  175. 175.
    Ho, S.Y., Mittal, G.S.: Electroporation of cell membranes: a review. Crit. Rev. Biotechnol. 16, 349–362 (1996)CrossRefGoogle Scholar
  176. 176.
    Weaver, J.C., Chizmadzhev, Y.A.: Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41, 135–160 (1996)CrossRefGoogle Scholar
  177. 177.
    Álvarez, I., Condón, S., Raso, J.: Microbial inactivation by pulsed electric fields. In: Raso, J., Heinz, V. (eds.) Pulsed Electric Fields Technology for the Food Industry: Fundamentals and Applications, pp. 97–129. Springer, New York (2006)CrossRefGoogle Scholar
  178. 178.
    Heinz, V., Álvarez, I., Angersbach, A., Knorr, D.: Preservation of liquid foods by high intensity pulsed electric fields – basic concepts for process design. Trends Food Sci. Technol. 12, 103–111 (2001)CrossRefGoogle Scholar
  179. 179.
    Álvarez, I., Pagán, R., Condón, S., Raso, J.: The influence of process parameters for the inactivation of Listeria monocytogenes by pulsed electric fields. Int. J. Food Microbiol. 87, 87–95 (2003)CrossRefGoogle Scholar
  180. 180.
    Álvarez, I., Raso, J., Sala, F.J., Condón, S.: Inactivation of Yersinia enterocolitica by pulsed electric fields. Food Microbiol. 20, 691–700 (2003)CrossRefGoogle Scholar
  181. 181.
    Saldaña, G., Puértolas, E., Álvarez, I., Meneses, N., Knorr, D., Raso, J.: Evaluation of a static treatment chamber to investigate kinetics of microbial inactivation by pulsed electric fields at different temperatures at quasi-isothermal conditions. J. Food Eng. 100, 349–356 (2010)CrossRefGoogle Scholar
  182. 182.
    Sharma, P., Bremer, P., Oey, I., Everetta, D.W.: Bacterial inactivation in whole milk using pulsed electric field processing. Int. Dairy J. 35(1), 49–56 (2014)CrossRefGoogle Scholar
  183. 183.
    Timmermans, R.A.H., Groot, M.N., Nederhoff, A.L., van Boekelb, M.A.J.S., Matsera, A.M., Mastwijka, H.C.: Pulsed electric field processing of different fruit juices: impact of pH and temperature on inactivation of spoilage and pathogenic micro-organisms. Int. J. Food Microbiol. 173, 105–111 (2014)CrossRefGoogle Scholar
  184. 184.
    Siemer, C., Toepfl, S., Heinz, V.: Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) in combination with thermal energy – I. Influence of process- and product parameters. Food Control 39, 163–171 (2014)CrossRefGoogle Scholar
  185. 185.
    Heinz, V., Toepfl, S., Knorr, D.: Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment. Innov. Food Sci. Emerg. Technol. 4(2), 167–175 (2003)CrossRefGoogle Scholar
  186. 186.
    Guerrero-Beltrán, J.A., Sepulveda, D.R., Góngora-Nieto, M.M., Swanson, B., Barbosa-Cánovas, G.V.: Milk thermization by pulsed electric fields (PEF) and electrically induced heat. J. Food Eng. 100(1), 6–60 (2010)CrossRefGoogle Scholar
  187. 187.
    Wouters, P.C., Dutreux, N., Smelt, J.P.P., Lelieveld, H.L.M.: Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. Appl. Environ. Microbiol. 65, 5354–5371 (1999)Google Scholar
  188. 188.
    Aronsson, K., Ronner, U.: Influence of pH, water activity and temperature on the inactivation of Escherichia coli and Saccharomyces cerevisiae by pulsed electric fields. Innov. Food Sci. Emerg. Technol. 2, 105–112 (2001)CrossRefGoogle Scholar
  189. 189.
    Raso, J., Álvarez, I., Condón, S., Sala, F.J.: Predicting inactivation of Salmonella senftenberg by pulsed electric fields. Innov. Food Sci. Emerg. Technol. 1, 21–30 (2000)CrossRefGoogle Scholar
  190. 190.
    Saldaña, G., Puértolas, E., López, N., García, D., Álvarez, I., Raso, J.: Comparing the PEF resistance and occurrence of sublethal injury on different strains of Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes and Staphylococcus aureus in media of pH 4 and 7. Innov. Food Sci. Emerg. Technol. 10, 160–165 (2009)CrossRefGoogle Scholar
  191. 191.
    Álvarez, I., Pagán, R., Raso, J., Condón, S.: Environmental factors influencing the inactivation of Listeria monocytogenes by pulsed electric fields. Lett. Appl. Microbiol. 35, 489–493 (2002)CrossRefGoogle Scholar
  192. 192.
    Rodrigo, D., Ruíz, P., Barbosa-Cánovas, G.V., Martínez, A., Rodrigo, M.: Kinetic model for the inactivation of Lactobacillus plantarum by pulsed electric fields. Int. J. Food Microbiol. 81, 223–229 (2003)CrossRefGoogle Scholar
  193. 193.
    García, D., Gómez, N., Raso, J., Pagán, R.: Bacterial resistance after pulsed electric fields depending on the treatment medium pH. Innov. Food Sci. Emerg. Technol. 6, 388–395 (2005)CrossRefGoogle Scholar
  194. 194.
    Pagán, R., Esplugas, S., Góngora-Nieto, M.M., Barbosa-Cánovas, G.V., Swanson, B.G.: Inactivation of Bacillus subtilis spores using high intensity pulsed electric fields in combination with other food conservation technologies. Food Sci. Technol. Int. 4, 33–44 (1998)CrossRefGoogle Scholar
  195. 195.
    Pol, I.E., Mastwijk, H.C., Slump, R.A., Popa, M.E., Smid, E.J.: Influence of food matrix on inactivation of Bacillus cereus by combinations of nisin, pulsed electric field treatment and carvacrol. J. Food Prot. 64, 1012–1018 (2001)Google Scholar
  196. 196.
    El-Hag, A.H., Jayaram, S.H., Griffiths, M.W.: Inactivation of naturally grown microorganisms in orange juice using pulsed electric fields. IEEE Trans. Plasma Sci. 34(4 II), 1412–1415 (2006)CrossRefGoogle Scholar
  197. 197.
    Min, S., Jin, Z.T., Min, S.K., Yeom, H., Zhang, Q.H.: Commercial-scale pulsed electric field processing of orange juice. Food Chem. Toxicol. 64, 1265–1271 (2003)Google Scholar
  198. 198.
    Raso, J., Barbosa-Cánovas, G.V.: Nonthermal preservation of foods using combined processing techniques. Crit. Rev. Food Sci. 43, 265–285 (2003)CrossRefGoogle Scholar
  199. 199.
    Monfort, S., Saldaña, G., Condón, S., Raso, J., Álvarez, I.: Inactivation of Salmonella spp. in liquid whole egg using pulsed electric fields, heat, and additives. Food Microbiol. 30(2), 393–399 (2012)CrossRefGoogle Scholar
  200. 200.
    Bull, M.K., Szabo, E.A., Cole, M.B., Stewart, C.M.: Toward validation of process criteria for high-pressure processing of orange juice with predictive models. J. Food Prot. 68, 949–954 (2005)Google Scholar
  201. 201.
    Food and Drug Administration (FDA).: Hazard analysis and critical control point (HACCP) procedures for the safe and sanitary processing and importing of juice; final rule. Federal Register 66 FR 6137–6202 (2001)Google Scholar
  202. 202.
    Sampedro, F., Rivas, A., Rodrigo, D., Martínez, A., Rodrigo, M.: Effect of temperature and substrate on PEF inactivation of Lactobacillus plantarum in an orange juice-milk beverage. Eur. Food Res. Technol. 223, 30–34 (2006)CrossRefGoogle Scholar
  203. 203.
    Toepfl, S.: Pulsed electric field food processing – industrial equipment design and commercial applications. Stewart Posthar Rev. 2, 1–7 (2012)CrossRefGoogle Scholar
  204. 204.
    Sampedro, F., McAloon, A., Yee, W., Fan, X., Geveke, D.J.: Cost analysis and environmental impact of pulsed electric fields and high pressure processing in comparison with thermal pasteurization. Food Bioprocess Technol. 7(7), 1928–1937 (2014)CrossRefGoogle Scholar
  205. 205.
    Puértolas, E., López, N., Condón, S., Raso, J., Álvarez, I.: Pulsed electric fields inactivation of wine spoilage yeast and bacteria. Int. J. Food Microbiol. 130(1), 49–55 (2009)CrossRefGoogle Scholar
  206. 206.
    Arroyo, C., Cebrián, G., Pagán, R., Condón, S.: Resistance of Enterobacter sakazakii to pulsed electric fields. Innov. Food Sci. Emerg. Technol. 11(2), 314–321 (2010)CrossRefGoogle Scholar
  207. 207.
    Lu, X., Laroussi, M., Puech, V.: On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci. Technol. 21(3), 034005 (2012). doi: 10.1088/0963-0252/21/3/034005 CrossRefGoogle Scholar
  208. 208.
    Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., von Woedtke, T., Brandenburg, R., von dem Hagen, T., Weltmann, K.D.: Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D-Appl. Phys. 44(1), 013002 (2011). doi: 10.1088/0022-3727/44/1/013002 CrossRefGoogle Scholar
  209. 209.
    De Geyter, N., Morent, R.: Nonthermal plasma sterilization of living and nonliving surfaces. Annu. Rev. Biomed. Eng. 14(1), 255–274 (2012). doi: 10.1146/annurev-bioeng-071811-150110 CrossRefGoogle Scholar
  210. 210.
    Chang, J.S., Lawless, P.A., Yamamoto, T.: Corona discharge processes. IEEE Trans. Plasma Sci. 19(6), 1152–1166 (1991). doi: 10.1109/27.125038 CrossRefGoogle Scholar
  211. 211.
    Malik, M.A., Xiao, S., Schoenbach, K.H.: Scaling of surface-plasma reactors with a significantly increased energy density for NO conversion. J. Hazard. Mater. 209, 293–298 (2012). doi: 10.1016/j.jhazmat.2012.01.024 CrossRefGoogle Scholar
  212. 212.
    Edelblute, C.M., Malik, M.A., Heller, L.C.: Surface-dependent inactivation of model microorganisms with shielded sliding plasma discharges and applied air flow. Bioelectrochemistry 103, 22–27 (2015). doi: 10.1016/j.bioelechem.2014.08.013 CrossRefGoogle Scholar
  213. 213.
    Kogelschatz, U.: Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 23(1), 1–46 (2003). doi: 10.1023/A:1022470901385 CrossRefGoogle Scholar
  214. 214.
    Morfill, G.E., Shimizu, T., Steffes, B., Schmidt, H.U.: Nosocomial infections-a new approach towards preventive medicine using plasmas. New J. Phys. 11, 115019 (2009). doi: 10.1088/1367-2630/11/11/115019 CrossRefGoogle Scholar
  215. 215.
    Cao, Z., Walsh, J.L., Kong, M.G.: Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment. Appl. Phys. Lett. 94(2), 021501 (2009). doi: 10.1063/1.3069276 CrossRefGoogle Scholar
  216. 216.
    Lu, X., Wu, S., Chu, P.K., Liu, D., Pan, Y.: An atmospheric-pressure plasma brush driven by sub-microsecond voltage pulses. Plasma Sources Sci. Technol. 20(6), 065009 (2011). doi: 10.1088/0963-0252/20/6/065009 CrossRefGoogle Scholar
  217. 217.
    Brandenburg, R., Lange, H., von Woedtke, T., Stieber, M., Kindel, E., Ehlbeck, J., Weltmann, K.D.: Antimicrobial effects of UV and VUV radiation of nonthermal plasma jets. IEEE Trans. Plasma Sci. 37(6), 877–883 (2009). doi: 10.1109/Tps.2009.2019657 CrossRefGoogle Scholar
  218. 218.
    Brisset, J.L., Hnatiuc, E.: Peroxynitrite: a re-examination of the chemical properties of non-thermal discharges burning in air over aqueous solutions. Plasma Chem. Plasma Process. 32(4), 655–674 (2012). doi: 10.1007/s11090-012-9384-x CrossRefGoogle Scholar
  219. 219.
    Kolb, J.F., Mattson, A.M., Edelblute, C.M., Hao, X.L., Malik, M.A., Heller, L.C.: Cold DC-operated air plasma jet for the inactivation of infectious microorganisms. IEEE Trans. Plasma Sci. 40(11), 3007–3026 (2012). doi: 10.1109/Tps.2012.2216292 CrossRefGoogle Scholar
  220. 220.
    Camp, J.T., Jing, Y., Zhuang, J., Kolb, J.F., Beebe, S.J., Song, J.H., Joshi, R.P., Xiao, S., Schoenbach, K.H.: Cell death induced by subnanosecond pulsed electric fields at elevated temperatures. IEEE Trans. Plasma Sci. 40(10), 2334–2347 (2012). doi: 10.1109/Tps.2012.2208202 CrossRefGoogle Scholar
  221. 221.
    Heller, L.C., Edelblute, C.M., Mattson, A.M., Hao, X., Kolb, J.F.: Inactivation of bacterial opportunistic skin pathogens by nonthermal DC-operated afterglow atmospheric plasma. Lett. Appl. Microbiol. 54(2), 126–132 (2012). doi: 10.1111/j.1472-765X.2011.03186.x CrossRefGoogle Scholar
  222. 222.
    Schoenbach, K.H., Xiao, S., Joshi, R.P., Camp, J.T., Heeren, T., Kolb, J.F., Beebe, S.J.: The effect of intense subnanosecond electrical pulses on biological cells. IEEE Trans. Plasma Sci. 36(2), 414–422 (2008). doi: 10.1109/Tps.2008.918786 CrossRefGoogle Scholar
  223. 223.
    Sysolyatina, E., Mukhachev, A., Yurova, M., Grushin, M., Karalnik, V., Petryakov, A., Trushkin, N., Ermolaeva, S., Akishev, Y.: Role of the charged particles in bacteria inactivation by plasma of a positive and negative corona in ambient air. Plasma Processes Polym. 11(4), 315–334 (2014). doi: 10.1002/ppap.201300041 CrossRefGoogle Scholar
  224. 224.
    Laroussi, M.: Sterilization of contaminated matter with an atmospheric pressure plasma. IEEE Trans. Plasma Sci. 24(3), 1188–1191 (1996)CrossRefGoogle Scholar
  225. 225.
    Morfill, G.E., Kong, M.G., Zimmermann, J.L.: Focus on plasma medicine. New J. Phys. 11, 115011 (2009). doi: 10.1088/1367-2630/11/11/115011 CrossRefGoogle Scholar
  226. 226.
    Kong, M.G., Kroesen, G., Morfill, G., Nosenko, T., Shimizu, T., van Dijk, J., Zimmermann, J.L.: Plasma medicine: an introductory review. New J. Phys. 11, 115012 (2009). doi: 10.1088/1367-2630/11/11/115012 CrossRefGoogle Scholar
  227. 227.
    Morent, R., Geyter, N.D.: Inactivation of bacteria by non-thermal plasmas. Biomed. Eng. Front. Chall. InTech. (2011). doi: 10.5772/18610 Google Scholar
  228. 228.
    Plasma for Bio-Decontamination, Medicine and Food Security. In: Machala, Z.H. K., Akishev, Y. (eds.) (2012)Google Scholar
  229. 229.
    Kvam, E., Davis, B., Mondello, F., Garner, A.L.: Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage. Antimicrob. Agents Chemother. 56(4), 2028–2036 (2012). doi: 10.1128/AAC.05642-11 CrossRefGoogle Scholar
  230. 230.
    Marsili, L., Espie, S., Anderson, J.G., MacGregor, S.J.: Plasma inactivation of food-related microorganisms in liquids. Radiat. Phys. Chem. 65(4–5), 507–513 (2002)CrossRefGoogle Scholar
  231. 231.
    Digel, I., Temiz Artmann, A., Nishikawa, K., Cook, M., Kurulgan, E., Artmann, G.M.: Bactericidal effects of plasma-generated cluster ions. Med. Biol. Eng. Comput. 43(6), 800–807 (2005)CrossRefGoogle Scholar
  232. 232.
    Scholtz, V., Julak, J., Kriha, V., Mosinger, J., Kopecka, S.: Decontamination effects of low-temperature plasma generated by corona discharge. Part II: new insights. Prague Med. Rep. 108(2), 128–146 (2007)Google Scholar
  233. 233.
    Ermolaeva, S.A., Varfolomeev, A.F., Chernukha, M.Y., Yurov, D.S., Vasiliev, M.M., Kaminskaya, A.A., Moisenovich, M.M., Romanova, J.M., Murashev, A.N., Selezneva, I.I., Shimizu, T., Sysolyatina, E.V., Shaginyan, I.A., Petrov, O.F., Mayevsky, E.I., Fortov, V.E., Morfill, G.E., Naroditsky, B.S., Gintsburg, A.L.: Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J. Med. Microbiol. 60(Pt 1), 75–83 (2011). doi: 10.1099/jmm.0.020263-0 CrossRefGoogle Scholar
  234. 234.
    Alkawareek, M.Y., Algwari, Q.T., Gorman, S.P., Graham, W.G., O’Connell, D., Gilmore, B.F.: Application of atmospheric pressure nonthermal plasma for the in vitro eradication of bacterial biofilms. FEMS Immunol. Med. Microbiol. 65(2), 381–384 (2012). doi: 10.1111/j.1574-695X.2012.00942.x CrossRefGoogle Scholar
  235. 235.
    Klampfl, T.G., Isbary, G., Shimizu, T., Li, Y.F., Zimmermann, J.L., Stolz, W., Schlegel, J., Morfill, G.E., Schmidt, H.U.: Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl. Environ. Microbiol. 78(15), 5077–5082 (2012). doi: 10.1128/AEM.00583-12 CrossRefGoogle Scholar
  236. 236.
    Brun, P., Brun, P., Vono, M., Venier, P., Tarricone, E., Deligianni, V., Martines, E., Zuin, M., Spagnolo, S., Cavazzana, R., Cardin, R., Castagliuolo, I., Valerio, A.L., Leonardi, A.: Disinfection of ocular cells and tissues by atmospheric-pressure cold plasma. PLoS One 7(3), e33245 (2012). doi: 10.1371/journal.pone.0033245 CrossRefGoogle Scholar
  237. 237.
    Cahill, O.J., Claro, T., O'Connor, N., Cafolla, A.A., Stevens, N.T., Daniels, S., Humphreys, H.: Cold air plasma to decontaminate inanimate surfaces of the hospital environment. Appl. Environ. Microbiol. 80(6), 2004–2010 (2014). doi: 10.1128/AEM.03480-13 CrossRefGoogle Scholar
  238. 238.
    Joshi, S.G., Cooper, M., Yost, A., Paff, M., Ercan, U.K., Fridman, G., Friedman, G., Fridman, A., Brooks, A.D.: Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob. Agents Chemother. 55(3), 1053–1062 (2011)CrossRefGoogle Scholar
  239. 239.
    Lu, H., Patil, S., Keener, K.M., Cullen, P.J., Bourke, P.: Bacterial inactivation by high-voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA. J. Appl. Microbiol. 116(4), 784–794 (2014). doi: 10.1111/jam.12426 CrossRefGoogle Scholar
  240. 240.
    Helmke, A., Hoffmeister, D., Mertens, N., Emmert, S., Schuette, J., Vioel, W.: The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air. New J. Phys. 11, 115025 (2009). doi: 10.1088/1367-2630/11/11/115025 CrossRefGoogle Scholar
  241. 241.
    Korachi, M., Gurol, C., Aslan, N.: Atmospheric plasma discharge sterilization effects on whole cell fatty acid profiles of Escherichia coli and Staphylococcus aureus. J. Electrostat. 68(6), 508–512 (2010). doi: 10.1016/j.elstat.2010.06.014 CrossRefGoogle Scholar
  242. 242.
    Kim, S.M., Kim, J.I.: Decomposition of biological macromolecules by plasma generated with helium and oxygen. J. Microbiol. 44(4), 466–471 (2006)Google Scholar
  243. 243.
    Pankaj, S.K., Misra, N.N., Cullen, P.J.: Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innov. Food Sci. Emerg. 19, 153–157 (2013). doi: 10.1016/j.ifset.2013.03.001 CrossRefGoogle Scholar
  244. 244.
    Surowsky, B., Fischer, A., Schlueter, O., Knorr, D.: Cold plasma effects on enzyme activity in a model food system. Innov. Food Sci. Emerg. 19, 146–152 (2013). doi: 10.1016/j.ifset.2013.04.002 CrossRefGoogle Scholar
  245. 245.
    Lackmann, J.W., Schneider, S., Edengeiser, E., Jarzina, F., Brinckmann, S., Steinborn, E., Havenith, M., Benedikt, J., Bandow, J.E.: Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. J. R. Soc. Interface Roy. Soc. 10(89), 20130591 (2013). doi: 10.1098/rsif.2013.0591 CrossRefGoogle Scholar
  246. 246.
    Jena, N.R.: DNA damage by reactive species: mechanisms, mutation and repair. J. Biosci. 37(3), 503–517 (2012)MathSciNetCrossRefGoogle Scholar
  247. 247.
    Perni, S.: Probing bactericidal mechanisms induced by cold atmospheric plasmas with Escherichia coli mutants. Appl. Phys. Lett. 90(7), 073902 (2007)CrossRefGoogle Scholar
  248. 248.
    Feng, H., Wang, R., Sun, P., Wu, H., Liu, Q., Fang, J., Zhu, W., Li, F., Zhang, J.: A study of eukaryotic response mechanisms to atmospheric pressure cold plasma by using Saccharomyces cerevisiae single gene mutants. Appl. Phys. Lett. 97(13). DOI:DOI  10.1063/1.3491180 (2010)
  249. 249.
    Montie, T.C., Kelly-Wintenberg, K., Roth, J.R.: An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans. Plasma Sci. 28(1), 41–50 (2000)CrossRefGoogle Scholar
  250. 250.
    Klämpfl, T.G., Shimizu, T., Koch, S., Balden, M., Gemein, S., Li, Y.-F., Mitra, A., Zimmermann, J.L., Gebel, J., Morfill, G.E., Schmidt, H.-U.: Decontamination of nosocomial bacteria including clostridium difficile spores on dry inanimate surface by cold atmospheric plasma. Plasma Processes Polym. 11(10), 974–984 (2014). doi: 10.1002/ppap.201400080 CrossRefGoogle Scholar
  251. 251.
    Vleugels, M., Shama, G., Deng, X.T., Greenacre, E., Brocklehurst, T., Kong, M.G.: Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control. IEEE Trans. Plasma Sci. 33(2), 824–828 (2005). doi: 10.1109/Tps.2005.844524 CrossRefGoogle Scholar
  252. 252.
    Kamgang, J.O., Briandet, R., Herry, J.M., Brisset, J.L., Naitali, M.: Destruction of planktonic, adherent and biofilm cells of Staphylococcus epidermidis using a gliding discharge in humid air. J. Appl. Microbiol. 103(3), 621–628 (2007). doi: 10.1111/j.1365-2672.2007.03286.x CrossRefGoogle Scholar
  253. 253.
    Abramzon, N., Joaquin, J.C., Bray, J., Brelles-Marino, G.: Biofilm destruction by RF high-pressure cold plasma jet. IEEE Trans. Plasma Sci. 34(4), 1304–1309 (2009)CrossRefGoogle Scholar
  254. 254.
    Zelaya, A.J., Stough, G., Rad, N., Vandervoort, K., Brelles-Marino, G.: Pseudomonas aeruginosa biofilm inactivation: decreased cell culturability, adhesiveness to surfaces, and biofilm thickness upon high-pressure nonthermal plasma treatment. IEEE Trans. Plasma Sci. 38(12), 3398–3403 (2010). doi: 10.1109/TPS.2010.2082570 CrossRefGoogle Scholar
  255. 255.
    Joshi, S.G., Paff, M., Friedman, G., Fridman, G., Fridman, A., Brooks, A.D.: Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: a biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. Am. J. Infect. Control 38(4), 293–301 (2010). doi: 10.1016/j.ajic.2009.11.002 CrossRefGoogle Scholar
  256. 256.
    Cotter, J.J., Maguire, P., Soberon, F., Daniels, S., O'Gara, J.P., Casey, E.: Disinfection of meticillin-resistant Staphylococcus aureus and Staphylococcus epidermidis biofilms using a remote non-thermal gas plasma. J. Hosp. Infect. 78(3), 204–207 (2011). doi: 10.1016/j.jhin.2011.03.019 CrossRefGoogle Scholar
  257. 257.
    Pei, X., Lu, X., Liu, J., Liu, D., Yang, Y., Ostrikov, K., Chu, P.K., Pan, Y.: Inactivation of a 25.5 mu m Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet. J. Phys. D-Appl. Phys. 45(16), 165205 (2012). doi: 10.1088/0022-3727/45/16/165205 CrossRefGoogle Scholar
  258. 258.
    Galvin, S., Cahill, O., O'Connor, N., Cafolla, A.A., Daniels, S., Humphreys, H.: The antimicrobial effects of helium and helium–air plasma on Staphylococcus aureus and Clostridium difficile. Lett. Appl. Microbiol. 57(2), 83–90 (2013). doi: 10.1111/lam.12091 CrossRefGoogle Scholar
  259. 259.
    Maisch, T., Shimizu, T., Li, Y.F., Heinlin, J., Karrer, S., Morfill, G., Zimmermann, J.L.: Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS One 7(4), e34610 (2012). doi: 10.1371/journal.pone.0034610 CrossRefGoogle Scholar
  260. 260.
    Baxter, H.C., Campbell, G.A., Whittaker, A.G., Jones, A.C., Aitken, A., Simpson, A.H., Casey, M., Bountiff, L., Gibbard, L., Baxter, R.L.: Elimination of transmissible spongiform encephalopathy infectivity and decontamination of surgical instruments by using radio-frequency gas-plasma treatment. J. Gen. Virol. 86(Pt 8), 2393–2399 (2005). doi: 10.1099/vir.0.81016-0 CrossRefGoogle Scholar
  261. 261.
    Deng, X.T., Shi, J.J., Chen, H.L., Kong, M.G.: Protein destruction by atmospheric pressure glow discharges. Appl. Phys. Lett. 90(1), 013903 (2007). doi: 10.1063/1.2410219 CrossRefGoogle Scholar
  262. 262.
    Bayliss, D.L., Walsh, J.L., Shama, G., Iza, F., Kong, M.G.: Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet. New J. Phys. 11, 115024 (2009). doi: 10.1088/1367-2630/11/11/115024 CrossRefGoogle Scholar
  263. 263.
    Niemira, B.A.: Cold plasma decontamination of foods. Ann. Rev. Food Sci. Technol. 3(1), 125–142 (2012). doi: 10.1146/annurev-food-022811-101132 CrossRefGoogle Scholar
  264. 264.
    Misra, N.N., Tiwari, B.K., Raghavarao, K.S.M.S., Cullen, P.J.: Nonthermal plasma inactivation of food-borne pathogens. Food Eng. Rev. 3(3-4), 159–170 (2011). doi: 10.1007/s12393-011-9041-9 CrossRefGoogle Scholar
  265. 265.
    Baier, M., Görgen, M., Ehlbeck, J., Knorr, D., Herppich, W.B., Schlüter, O.: Non-thermal atmospheric pressure plasma: screening for gentle process conditions and antibacterial efficiency on perishable fresh produce. Innov. Food Sci. Emerg. 22, 147–157 (2014). doi: 10.1016/j.ifset.2014.01.011 CrossRefGoogle Scholar
  266. 266.
    Jiang, C.Q., Chen, M.T., Schaudinn, C., Gorur, A., Vernier, P.T., Costerton, J.W., Jaramillo, D.E., Sedghizadeh, P.P., Gundersen, M.A.: Pulsed atmospheric-pressure cold plasma for endodontic disinfection. IEEE Trans. Plasma Sci. 37(7), 1190–1195 (2009). doi: 10.1109/Tps.2009.2014870 CrossRefGoogle Scholar
  267. 267.
    Hammann, A., Huebner, N.O., Bender, C., Ekkernkamp, A., Hartmann, B., Hinz, P., Kindel, E., Koban, I., Koch, S., Kohlmann, T., Lademann, J., Matthes, R., Muller, G., Titze, R., Weltmann, K.D., Kramer, A.: Antiseptic efficacy and tolerance of tissue-tolerable plasma compared with two wound antiseptics on artificially bacterially contaminated eyes from commercially slaughtered pigs. Skin Pharmacol. Physiol. 23(6), 328–332 (2010)CrossRefGoogle Scholar
  268. 268.
    Rupf, S., Lehmann, A., Hannig, M., Schafer, B., Schubert, A., Feldmann, U., Schindler, A.: Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J. Med. Microbiol. 59(Pt 2), 206–212 (2010)CrossRefGoogle Scholar
  269. 269.
    Jiang, C., Schaudinn, C., Jaramillo, D.E., Webster, P., Costerton, J.W.: In vitro antimicrobial effect of a cold plasma jet against Enterococcus faecalis biofilms. ISRN Dent. 2012, 295736 (2012). doi: 10.5402/2012/295736 Google Scholar
  270. 270.
    Isbary, G., Morfill, G., Schmidt, H.U., Georgi, M., Ramrath, K., Heinlin, J., Karrer, S., Landthaler, M., Shimizu, T., Steffes, B., Bunk, W., Monetti, R., Zimmermann, J.L., Pompl, R., Stolz, W.: A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br. J. Dermatol. 163(1), 78–82 (2010)Google Scholar
  271. 271.
    Kelly-Wintenberg, K., Sherman, D.M., Tsai, P.P.Y., Ben Gadri, R., Karakaya, F., Chen, Z.Y., Roth, J.R., Montie, T.C.: Air filter sterilization using a one atmosphere uniform glow discharge plasma (the Volfilter). IEEE Trans. Plasma Sci. 28(1), 64–71 (2000)CrossRefGoogle Scholar
  272. 272.
    Nojima, H., Park, R.-E., Kwon, J.-H., Suh, I., Jeon, J., Ha, E., On, H.-K., Kim, H.-R., Choi, K., Lee, K.-H., Baik-Lin, S., Jung, H., Kang, S.J., Namba, S., Takiyama, K.: Novel atmospheric pressure plasma device releasing atomic hydrogen: reduction of microbial-contaminants and OH radicals in the air. J. Phys. D Appl. Phys. 40(2), 501 (2007)CrossRefGoogle Scholar
  273. 273.
    Vaze, N.D., Gallagher, M.J., Park, S., Fridman, G., Vasilets, V.N., Gutsol, A.F., Anandan, S., Friedman, G., Fridman, A.A.: Inactivation of bacteria in flight by direct exposure to nonthermal plasma. IEEE Trans. Plasma Sci. 38(11), 3234–3240 (2010). doi: 10.1109/Tps.2010.2072788 CrossRefGoogle Scholar
  274. 274.
    Ye, S.Y., Song, X.L., Liang, J.L., Zheng, S.H., Lin, Y.: Disinfection of airborne spores of Penicillium expansum in cold storage using continuous direct current corona discharge. Biosyst. Eng. 113(2), 112–119 (2012). doi: 10.1016/j.biosystemseng.2012.06.013 CrossRefGoogle Scholar
  275. 275.
    Wu, Y., Liang, Y., Wei, K., Li, W., Yao, M., Zhang, J., Grinshpun, S.A.: MS2 virus inactivation by atmospheric pressure cold plasma using different gas carriers and power levels. Appl. Environ. Microbiol. (2014). doi: 10.1128/AEM.03322-14. in pressGoogle Scholar
  276. 276.
    Terrier, O., Essere, B., Yver, M., Barthelemy, M., Bouscambert-Duchamp, M., Kurtz, P., VanMechelen, D., Morfin, F., Billaud, G., Ferraris, O., Lina, B., Rosa-Calatrava, M., Moules, V.: Cold oxygen plasma technology efficiency against different airborne respiratory viruses. J. Clin. Virol.: Off. Publ. Pan Am. Soc. Clin. Virol. 45(2), 119–124 (2009). doi: 10.1016/j.jcv.2009.03.017 CrossRefGoogle Scholar
  277. 277.
    Abou-Ghazala, A., Katsuki, S., Schoenbach, K.H., Dobbs, F.C., Moreira, K.R.: Bacterial decontamination of water by means of pulsed-corona discharges. IEEE Trans. Plasma Sci. 30(4), 1449–1453 (2002). doi: 10.1109/Tps.2002.804193 CrossRefGoogle Scholar
  278. 278.
    Martines, E., Zuin, M., Cavazzana, R., Gazza, E., Serianni, G., Spagnolo, S., Spolaore, M., Leonardi, A., Deligianni, V., Brun, P., Aragona, M., Castagliuolo, I., Brun, P.: A novel plasma source for sterilization of living tissues. New J. Phys. 11(11), 115014 (2009)CrossRefGoogle Scholar
  279. 279.
    Sohbatzadeh, F., Hosseinzadeh, C.A., Mirzanejhad, S., Mahmodi, S.: E. coli, P. aeruginosa, and B. cereus bacteria sterilization using afterglow of non-thermal plasma at atmospheric pressure. Appl. Biochem. Biotechnol. 160(7), 1978–1984 (2010)CrossRefGoogle Scholar
  280. 280.
    Ziuzina, D., Patil, S., Cullen, P.J., Keener, K.M., Bourke, P.: Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J. Appl. Microbiol. 114(3), 778–787 (2013). doi: 10.1111/jam.12087 CrossRefGoogle Scholar
  281. 281.
    Kuo, S.P., Tarasenko, O., Nourkbash, S., Bakhtina, A., Levon, K.: Plasma effects on bacterial spores in a wet environment. New J. Phys. 8, 41 (2006). doi: 10.1088/1367-2630/8/3/041 CrossRefGoogle Scholar
  282. 282.
    Alshraiedeh, N.H., Alkawareek, M.Y., Gorman, S.P., Graham, W.G., Gilmore, B.F.: Atmospheric pressure, nonthermal plasma inactivation of MS2 bacteriophage: effect of oxygen concentration on virucidal activity. J. Appl. Microbiol. 115(6), 1420–1426 (2013). doi: 10.1111/jam.12331 CrossRefGoogle Scholar
  283. 283.
    Montenegro, J., Ruan, R., Ma, H., Chen, P.: Inactivation of E. coli O157: H7 using a pulsed nonthermal plasma system. J. Food Sci. 67(2), 646–648 (2002)CrossRefGoogle Scholar
  284. 284.
    Gurol, C., Ekinci, F.Y., Aslan, N., Korachi, M.: Low temperature plasma for decontamination of E. coli in milk. Int. J. Food Microbiol. 157(1), 1–5 (2012). doi: 10.1016/j.ijfoodmicro.2012.02.016 CrossRefGoogle Scholar
  285. 285.
    de Boer, K., Moheimani, N.R., et al.: Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J. Appl. Phycol. 24(6), 1681–1698 (2012)CrossRefGoogle Scholar
  286. 286.
    Eisentraut, A.: Sustainable production of second-generation biofuels. OECD/IEA 2010: International Energy Agency. http://www.iea.org/topics/biofuels/publications/: 1–221 (2010)
  287. 287.
    Lewandowski, I., Heinz, A.: Delayed harvest of miscanthus – influences on biomass quantity and quality and environmental impacts of energy production. Eur. J. Agron. 19(1), 45–63 (2003)CrossRefGoogle Scholar
  288. 288.
    Dillschneider, R., Posten, C.: Closed bioreactors as tools for microalgae production. In: Lee, J.W. (ed.) Advanced Biofuels and Bioproducts, pp. 629–649. Springer, New York (2013)CrossRefGoogle Scholar
  289. 289.
    Schenk, P.M., Thomas-Hall, S.R., et al.: Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res. 1(1), 20–43 (2008)CrossRefGoogle Scholar
  290. 290.
    Chisti, Y.: Biodiesel from microalgae. Biotechnol. Adv. 25(3), 294–306 (2007)CrossRefGoogle Scholar
  291. 291.
    Amaro, H.M., Guedes, A.C., et al.: Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy 88(10), 3402–3410 (2011)CrossRefGoogle Scholar
  292. 292.
    Gouveia, L., Oliveira, A.: Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36(2), 269–274 (2009)CrossRefGoogle Scholar
  293. 293.
    Pulz, O., Gross, W.: Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65(6), 635–648 (2004)CrossRefGoogle Scholar
  294. 294.
    Rosello-Sastre, R.: Products from microalgae: an overview. Microalgal biotechnology: integration and economy, pp. 13–50. C. Posten and C. Walter, de Gruyter, Berlin/Boston (2012)Google Scholar
  295. 295.
    Norsker, N.-H., Barbosa, M.J., et al.: Microalgal production – a close look at the economics. Biotechnol. Adv. 29(1), 24–27 (2011)CrossRefGoogle Scholar
  296. 296.
    Jacobi, A., Posten, C.: Energy considerations of photobioreactors. In: Borowitzka, M.A., Moheimani, N.R. (eds.) Algae for Biofuels and Energy, vol. 5, pp. 223–232. Springer, Dordrecht/Heidelberg/New York/London (2013)Google Scholar
  297. 297.
    Morweiser, M., Kruse, O., et al.: Developments and perspectives of photobioreactors for biofuel production. Appl. Microbiol. Biotechnol. 87(4), 1291–1301 (2010)CrossRefGoogle Scholar
  298. 298.
    Sierra, E., Acien, F.G., et al.: Characterization of a flat plate photobioreactor for the production of microalgae. Chem. Eng. J. 138(1-3), 136–147 (2008)CrossRefGoogle Scholar
  299. 299.
    Dillschneider, R., Steinweg, C., et al.: Biofuels from microalgae: photoconversion efficiency during lipid accumulation. Bioresour. Technol. 142, 647–654 (2013)CrossRefGoogle Scholar
  300. 300.
    Molina, E., Acien, G., et al.: Downstream processing of cell mass and products. In: Richmond, A., Hu, Q. (eds.) Handbook of Microalgal Culture, 2nd edn, pp. 267–309, Wiley Blackwell, Chicester (2013)Google Scholar
  301. 301.
    Lardon, L., Helias, A., et al.: Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol. 43(17), 6475–6481 (2009)CrossRefGoogle Scholar
  302. 302.
    Xu, L.X., Brilman, D.W.F., et al.: Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis. Bioresour. Technol. 102(8), 5113–5122 (2011)CrossRefGoogle Scholar
  303. 303.
    Postma, P.R., Miron, T.L., et al.: Mild disintegration of the green microalgae Chlorella vulgaris using bead milling. Bioresour. Technol. 184, 297–304 (2015)CrossRefGoogle Scholar
  304. 304.
    Günerken, E., D'Hondt, E., et al.: Cell disruption for microalgae biorefineries. Biotechnol. Adv. 33(2), 243–260 (2015)CrossRefGoogle Scholar
  305. 305.
    Halim, R., Danquah, M.K., et al.: Extraction of oil from microalgae for biodiesel production: a review. Biotechnol. Adv. 30(3), 709–732 (2012)CrossRefGoogle Scholar
  306. 306.
    Macías-Sánchez, M.D., Robles-Medina, A., et al.: Biodiesel production from wet microalgal biomass by direct transesterification. Fuel 150, 14–20 (2015)CrossRefGoogle Scholar
  307. 307.
    Molina, E., González, M., et al.: Solvent extraction for microalgae lipids. In: Borowitzka, M.A., Moheimani, N.R. (eds.) Algae for Biofuels and Energy, vol. 5, pp. 187–205. Springer, Netherlands (2013)Google Scholar
  308. 308.
    Slade, R., Bauen, A.: Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53, 29–38 (2013)CrossRefGoogle Scholar
  309. 309.
    Wijffels, R.H., Barbosa, M.J.: An outlook on microalgal biofuels. Science 329(5993), 796–799 (2010)CrossRefGoogle Scholar
  310. 310.
    Goettel, M., Eing, C., et al.: Pulsed electric field assisted extraction of intracellular valuables from microalgae. Algal Res. Biomass Biofuels Bioprod. 2(4), 401–408 (2013)Google Scholar
  311. 311.
    Gusbeth, C., Eing, C., et al.: Fluorescence diagnostics for lipid status monitoring of microalgae during cultivation. Int. J. Renew. Energy Biofuels: 2016, 12, Article ID 899698 (2016). IBIMA Publishing. http://www.ibimapublishing.com/journals/IJREB/ijreb.html. doi: 10.5171/2016.899698
  312. 312.
    Eing, C., Goettel, M., et al.: Pulsed electric field treatment of microalgae-benefits for microalgae biomass processing. IEEE Trans. Plasma Sci. 41(10), 2901–2907 (2013)CrossRefGoogle Scholar
  313. 313.
    Luengo, E., Martínez, J., et al.: A comparative study on the effects of millisecond- and microsecond-pulsed electric field treatments on the permeabilization and extraction of pigments from chlorella vulgaris. J. Membr. Biol. 248(5), 1–9 (2015)Google Scholar
  314. 314.
    Kotnik, T., Frey, W., et al.: Electroporation-based applications in biotechnology. Trends Biotechnol. 33(8), 480–488 (2015)CrossRefGoogle Scholar
  315. 315.
    Coustets, M., Joubert-Durigneux, V., et al.: Optimization of protein electroextraction from microalgae by a flow process. Bioelectrochemistry 103, 74–81 (2015)CrossRefGoogle Scholar
  316. 316.
    Acién, F.G., Fernández, J.M., et al.: Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol. Adv. 30(6), 1344–1353 (2012)CrossRefGoogle Scholar
  317. 317.
    Brownbridge, G., Azadi, P., et al.: The future viability of algae-derived biodiesel under economic and technical uncertainties. Bioresour. Technol. 151, 166–173 (2014)CrossRefGoogle Scholar
  318. 318.
    Chen, R.: Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv 30(5), 1102–1107 (2012)CrossRefGoogle Scholar
  319. 319.
    Huang, C.J., Lin, H., Yang, X.: Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J. Ind. Microbiol. Biotechnol. 39(3), 383–399 (2012)CrossRefGoogle Scholar
  320. 320.
    Gellissen, G., Hollenberg, C.P.: Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha, and Kluyveromyces lactis – a review. Gene 190, 87–97 (1997)CrossRefGoogle Scholar
  321. 321.
    Cereghino, J., Cregg, J.M.: Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24, 45–66 (2000)CrossRefGoogle Scholar
  322. 322.
    Walker, T.L., Purton, S., Becker, D.K., et al.: Microalgae as bioreactors. Plant Cell Rep. 24, 629–641 (2005)CrossRefGoogle Scholar
  323. 323.
    Tran, M., Van, C., Barrera, D.J., Pettersson, P.L., Peinado, C.D., Bui, J., Mayfield, S.P.: Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc. Natl. Acad. Sci. U. S. A. 110(1), E15–E22 (2013)CrossRefGoogle Scholar
  324. 324.
    Safi, C., Charton, M., Pignolet, O., et al.:Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors, J. Appl. Phycol. 25(2), 1–7 (2012)Google Scholar
  325. 325.
    Schuttle, H., Kula, M.R.: Pilot and process-scale techniques for cell disruption. Biotechnol. Appl. Biochem. 12, 559–620 (1990)Google Scholar
  326. 326.
    Naglak, T.J., Hettwer, D.J., Wang, H.J.: Chemical permeabilization of cells for intracellular product release. Bioprocess Technol. 9, 177–205 (1990)Google Scholar
  327. 327.
    Ganeva, V., Galutzov, B.: Electropulsation as an alternative method for protein extraction from yeast. FEMS Microbiol. Lett. 174(2), 279–284 (1999)CrossRefGoogle Scholar
  328. 328.
    Barbosa-Canovas, G., Gongora-Nieto, M., Pothakamury, U., Swanson, B.: Preservation of Foods with Pulsed Electric Fields. Academic, San Diego (1999)Google Scholar
  329. 329.
    Simental-Martınez, J., Reddy Vennapusa, R., Benavides, J., et al.: A novel process for the recovery of superoxide dismutase from yeast exploiting electroextraction coupled to direct sorption. J. Chem. Technol. Biotechnol. 88, 1498–1505 (2013)CrossRefGoogle Scholar
  330. 330.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)CrossRefGoogle Scholar
  331. 331.
    Nesterenko, M.V., Tilley, M., Upton, S.J.: A simple modification of Blum’s silver stain method allows for 30 minute detection of proteins in polyacrylamide gels. J. Biochem. Biophys. Methods 28, 239–242 (1994)CrossRefGoogle Scholar
  332. 332.
    Kulbe, K., Bojanovski, M.: 3-Phosphoglycerate kinase from bovine liver and yeast. Methods Enzymol. 90, 115–120 (1982)CrossRefGoogle Scholar
  333. 333.
    Kirschner, V.B.: Purity criteria for the crystallizable isoenzyme of D-glyceraldehyde-3-phosphate dehydrogenase from baker’s yeast, Hoppe Seylers Z. Physiol. Chem. 349, 632–644 (1968)CrossRefGoogle Scholar
  334. 334.
    McDonald, M.: Yeast hexokinase. Methods Enzymol. 1, 269–272 (1955)CrossRefGoogle Scholar
  335. 335.
    Mbuyi-Kalala, A., Schnek, A.G., Leonis, J.: Separation and characterization of four enzyme forms of b-galactosidase from Saccharomyces lactis. Eur. J. Biochem. 178, 437–443 (1988)CrossRefGoogle Scholar
  336. 336.
    Meussdoerffer, F., Tortora, P., Holzer, H.: Purification and properties of proteinase A from yeast. J. Biol. Chem. 25, 12087–12093 (1980)Google Scholar
  337. 337.
    Ohshima, T., Hama, Y., Sato, M.: Releasing profiles of gene products from recombinant Escherichia coli in a high-voltage pulsed electric field. Biochem. Eng. J. 5, 149–155 (2004)CrossRefGoogle Scholar
  338. 338.
    Shiina, S., Ohshima, T., Sato, M.: Extracellular release of recombinant alpha-amylase from Escherichia coli using pulsed electric field. Biotechnol. Prog. 20, 1528–1533 (2004)CrossRefGoogle Scholar
  339. 339.
    Coustets, M., Ganeva, V., Galutzov, B., et al.: Millisecond duration pulses for flow-through electro-induced protein extraction from E. coli and associated eradication Bioelectrochemistry in press (2014)Google Scholar
  340. 340.
    Suga, M., Goto, A., Hatakeyama, T.J.: Electrically induced protein release from Schizosaccharomyces pombe cells in a hyperosmotic condition during and following a high electropulsation. Biosci. Bioeng. 103(4), 298–302 (2007)CrossRefGoogle Scholar
  341. 341.
    Suga, M., Hatakeyama, T.: Gene transfer and protein release of fission yeast by application of a high voltage electric pulse. Anal. Bioanal. Chem. 394(1), 13–16 (2009)CrossRefGoogle Scholar
  342. 342.
    Ganeva, V., Galutzov, B., Eynard, N., et al.: Electroinduced extraction of beta-galactosidase from Kluyveromyces lactis. Appl. Microbiol. Biotechnol. 56(3-4), 411–413 (2001)CrossRefGoogle Scholar
  343. 343.
    Ganeva, V., Galutzov, B., Teissié, J.: Flow process for electroextraction of intracellular enzymes from the fission yeast, Schizosaccharomyces pombe. Biotechnol. Lett. 26, 933–937 (2004)CrossRefGoogle Scholar
  344. 344.
    Zakhartsev, M., Momeu, C., Ganeva, V.: High-throughput liberation of water-soluble yeast content by irreversible electropermeation (HT-irEP). J. Biomol. Screen. 12(2), 267–275 (2007)CrossRefGoogle Scholar
  345. 345.
    Zlotnik, H., Fernandes, M.P., Blowers, B., et al.: Increased cell wall porosity in Saccharomyces cerevisiae after treatment with dithiothreitol or EDTA. J. Gen. Microbiol. 135, 2077–2084 (1984)Google Scholar
  346. 346.
    Schultheiss, C., Bluhm, H., Mayer, H.G., Kern, M., Michelberger, T., Witte, G.: Processing of sugar beets with pulsed-electric fields. IEEE Trans. Plasma Sci. 30(4), August 2002, 1547–1551 (2002)Google Scholar
  347. 347.
    Sack, M., Sigler, J., Frenzel, S., Eing, C., Arnold, J., Michelberger, T., Frey, W., Attmann, F., Stukenbrock, L., Mueller, G.: Research on industrial-scale electroporation devices fostering the extraction of substances from biological tissue. Food Eng. Rev. 2,147–156 (2010). doi:10.1007/s12393-010-9017-1Google Scholar
  348. 348.
    Puértolas, E., Hernández-Orte, P.E., Saldaña, G., Álvarez, I., Raso, J.: Improvement of winemaking process using pulsed electric fields at pilot-plant scale. Evolution of chromatic parameters and phenolic content of Cabernet Sauvignon red wines. Food Res. Int. 43(2010), 761–766 (2010)CrossRefGoogle Scholar
  349. 349.
    Sack, M., Sigler, J., Eing, C., Stukenbrock, L., Stängle, R., Wolf, A., Müller, G.: Operation of an electroporation device for mash. Proc. IEEE PPC. (2009) June 28 2009-July 2 2009, ISBN 978-1-4244-4064-1, doi:10.1109/PPC.2009.5386165Google Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  • Wolfgang Frey
    • 1
  • Christian Gusbeth
    • 1
  • Takashi Sakugawa
    • 2
  • Martin Sack
    • 1
  • Georg Mueller
    • 1
  • Juergen Sigler
    • 3
  • Eugene Vorobiev
    • 4
  • Nikolai Lebovka
    • 5
  • Ignacio Álvarez
    • 6
  • Javier Raso
    • 6
  • Loree C. Heller
    • 7
  • Muhammad A. Malik
    • 7
  • Christian Eing
    • 1
  • Justin Teissie
    • 8
  1. 1.Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave TechnologyEggenstein-LeopoldshafenGermany
  2. 2.Institute of Pulsed Power Science, Kumamoto UniversityKumamotoJapan
  3. 3.State Institute for Viticulture and OenologyFreiburgGermany
  4. 4.Sorbonne Universités, Université de Technologie de CompiègneCompiègneFrance
  5. 5.F. D. Ovcharenko Institute of Biocolloidal ChemistryKievUkraine
  6. 6.Food Science DepartmentUniversity of ZaragozaZaragozaSpain
  7. 7.Frank Reidy Research Center for BioelectricsOld Dominion UniversityNorfolkUSA
  8. 8.Institute of Pharmacology and Structural BiologyCNRS and Université de ToulouseToulouseFrance

Personalised recommendations