Skip to main content

Special Electromagnetic Agents: From Cold Plasma to Pulsed Electromagnetic Radiation

  • Chapter
  • First Online:
Bioelectrics

Abstract

Pulsed power is applied to gases and liquids to produce plasmas; these may interact with living organisms. Plasma, known as the fourth state of matter, consists of charged and neutral particles and is characterized by a quasi-neutral state. Two types of plasma exist, nonthermal and thermal equilibrium. Nonthermal plasma, the type most frequently employed in the bioelectric field, has a gas temperature much lower than its electron temperature. The biocidal agents which may be produced by nonthermal plasmas are heat, electric fields, ultraviolet radiation, shock waves, and reactive chemical species. Additionally, secondary biological effects can be induced through post-discharge reactions of chemical species produced by plasma in gases and liquid.

Interactions between pulsed electromagnetic fields and biological systems are studied in order to elucidate whether cellular systems are able to demodulate rapidly oscillating electric fields. Pulsed electromagnetic radiation comprises a central carrier frequency in the range from several GHz to about 1 THz and an electric field peak amplitude of tens of kV/m. High-power ultrawideband electromagnetic pulses (UWB-EMP) have recently been used for research in the bioelectric field to elucidate basic interactions with biological systems, to study induced biological effects, and to develop THz-based diagnostic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Razer, Y.P.: Gas Discharge Physics. Springer-Verlag, LLC, New York (1997)

    Google Scholar 

  2. Vercammen, K.L.L., Berezin, A.A., Lox, F., Chang, J.-S.: Non-thermal plasma techniques for the reduction of volatile organic compounds in Air streamers: a critical review. J. Adv. Oxid. Technol. 2, 17 (1997)

    Google Scholar 

  3. Akishev, Y.S., Deryugin, A.A., Kochetov, I.V., Napartovich, A.P., Trushkin, N.I.: Dc glow-discharge in air-flow at atmospheric-pressure in connection with waste gases treatment. J. Phys. D. Appl. Phys. 26, 1630–1637 (1993)

    Article  Google Scholar 

  4. Stark, R.H., Schoenbach, K.H.: Direct current glow discharges in atmospheric air. Appl. Phys. Lett. 74, 3770–3772 (1999)

    Article  Google Scholar 

  5. Jiang, C.Q., Mohamed, A.A.H., Stark, R.H., Yuan, J.H., Schoenbach, K.H.: Removal of volatile organic compounds in atmospheric pressure air by means of direct current glow discharges. IEEE Trans. Plasma Sci. 33, 1416–1425 (2005)

    Article  Google Scholar 

  6. Becker, K.H., Schoenbach, K.H., Eden, J.G.: Microplasmas and applications. J. Phys. D. Appl. Phys. 39, R55–R70 (2006)

    Article  Google Scholar 

  7. Kolb, J.F., Mohamed, A.A.H., Price, R.O., Swanson, R.J., Bowman, A., Chiavarini, R.L., Stacey, M., Schoenbach, K.H.: Cold atmospheric pressure air plasma jet for medical applications. Appl. Phys. Lett. 92, 241501 (2008)

    Google Scholar 

  8. Eliasson, B., Kogelschatz, U.: Nonequilibrium volume plasma chemical-processing. IEEE Trans. Plasma Sci. 19, 1063–1077 (1991)

    Article  Google Scholar 

  9. Donohoe, K.G., Wydeven, T.: Plasma polymerization of ethylene in an atmospheric pressure-pulsed discharge. J. Appl. Polym. Sci. 23, 2591–2601 (1979)

    Article  Google Scholar 

  10. Kanazawa, S., Kogoma, M., Moriwaki, T., Okazaki, S.: Stable glow plasma at atmospheric-pressure. J. Phys. D. Appl. Phys. 21, 838–840 (1988)

    Article  Google Scholar 

  11. Laroussi, M.: Sterilization of contaminated matter with an atmospheric pressure plasma. IEEE Trans. Plasma Sci. 24, 1188–1191 (1996)

    Article  Google Scholar 

  12. Laroussi, M.: Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Trans. Plasma Sci. 30, 1409–1415 (2002)

    Article  Google Scholar 

  13. Kelly-Wintenberg, K., Montie, T.C., Brickman, C., Roth, J.R., Carr, A.K., Sorge, K., Wadsworth, L.C., Tsai, P.P.Y.: Room temperature sterilization of surfaces and fabrics with a one atmosphere uniform glow discharge plasma. J. Ind. Microbiol. Biot. 20, 69–74 (1998)

    Article  Google Scholar 

  14. Chan, C.M., Ko, T.M., Hiraoka, H.: Polymer surface modification by plasmas and photons. Surf. Sci. Rep. 24, 3–54 (1996)

    Article  Google Scholar 

  15. Laroussi, M., Akan, T.: Arc-free atmospheric pressure cold plasma jets: a review. Plasma Process. Polym. 4, 777–788 (2007)

    Article  Google Scholar 

  16. Duan, Y.X., Huang, C., Yu, Q.S.: Low-temperature direct current glow discharges at atmospheric pressure. IEEE Trans. Plasma Sci. 33, 328–329 (2005)

    Article  Google Scholar 

  17. Duan, Y.X., Huang, C., Yu, Q.S.: Cold plasma brush generated at atmospheric pressure. Rev. Sci. Instrum. 78, 015104 (2007)

    Google Scholar 

  18. Laroussi, M., Lu, X.: Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl. Phys. Lett. 87, 113902–1 (2005)

    Article  Google Scholar 

  19. Jiang, C.Q., Chen, M.T., Gorur, A., Schaudinn, C., Jaramillo, D.E., Costerton, J.W., Sedghizadeh, P.P., Vernier, P.T., Gundersen, M.A.: Nanosecond pulsed plasma dental probe. Plasma Process. Polym. 6, 479–483 (2009)

    Article  Google Scholar 

  20. Lu, X.P., Jiang, Z.H., Xiong, Q., Tang, Z.Y., Pan, Y.: A single electrode room-temperature plasma jet device for biomedical applications. Appl. Phys. Lett. 92, 151504 (2008)

    Google Scholar 

  21. Kedzierski, J., Engemann, J., Teschke, M., Korzec, D.: Atmospheric pressure plasma jets for 2D and 3D materials processing. Sol. St. Phen. 107, 119–123 (2005)

    Article  Google Scholar 

  22. Cheng, C., Liu, P., Xu, L., Zhang, L.Y., Zhan, R.J., Zhang, W.R.: Development of a new atmospheric pressure cold plasma jet generator and application in sterilization. Chin. Phys. 15, 1544–1548 (2006)

    Article  Google Scholar 

  23. Janca, J., Klima, M., Slavicek, P., Zajickova, L.: HF plasma pencil – new source for plasma surface processing. Surf. Coat. Tech. 116, 547–551 (1999)

    Article  Google Scholar 

  24. Foest, R., Kindel, E., Ohl, A., Stieber, M., Weltmann, K.D.: Non-thermal atmospheric pressure discharges for surface modification. Plasma Phys. Contr. F. 47, B525–B536 (2005)

    Article  Google Scholar 

  25. Al-Shamma’s, A.I., Wylie, S.R., Lucas, J., Pau, C.F.: Design and construction of a 2.45 GHz waveguide-based microwave plasma jet at atmospheric pressure for material processing. J. Phys. D. Appl. Phys. 34, 2734–2741 (2001)

    Article  Google Scholar 

  26. Stonies, R., Schermer, S., Voges, E., Broekaert, J.A.C.: A new small microwave plasma torch. Plasma Sources Sci. Technol. 13, 604–611 (2004)

    Article  Google Scholar 

  27. Laroussi, M.: Biological decontamination by nonthermal plasma. IEEE Trans. Plasma Sci. 28, 184–188 (2000)

    Article  Google Scholar 

  28. Sunka, P.: Pulse electrical discharges in water and their applications. Phys. Plasmas 8, 2587–2594 (2001)

    Article  Google Scholar 

  29. Montie, T.C., Kelly-Wintenberg, K., Roth, J.R.: An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans. Plasma Sci. 28, 41–50 (2000)

    Article  Google Scholar 

  30. Moisan, M., Barbeau, J., Crevier, M.C., Pelletier, J., Philip, N., Saoudi, B.: Plasma sterilization. Methods mechanisms. Pure Appl. Chem. 74, 349–358 (2002)

    Article  Google Scholar 

  31. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., Yahia, L.H.: Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int. J. Pharm. 226, 1–21 (2001)

    Article  Google Scholar 

  32. Odic, E., Goldman, A., Goldman, M., Delaveau, S., Le Hegarat, F.: Plasma sterilization technologies and processes. High Temp. Mater Process. 6, 385–396 (2002)

    Article  Google Scholar 

  33. Laroussi, M., Leipold, F.: Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spec. 233, 81–86 (2004)

    Article  Google Scholar 

  34. Gaunt, L.F., Beggs, C.B., Georghiou, G.E.: Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review. IEEE Trans. Plasma Sci. 34, 1257–1269 (2006)

    Article  Google Scholar 

  35. Fridman, G., Friedman, G., Gutsol, A., Shekhter, A.B., Vasilets, V.N., Fridman, A.: Applied plasma medicine. Plasma Process. Polym. 5, 503–533 (2008)

    Article  Google Scholar 

  36. Stoffels, E., Sakiyama, Y., Graves, D.B.: Cold atmospheric plasma: charged species and their interactions with cells and tissues. IEEE Trans. Plasma Sci. 36, 1441–1457 (2008)

    Article  Google Scholar 

  37. Kong, M.G., Kroesen, G., Morfill, G., Nosenko, T., Shimizu, T., van Dijk, J., Zimmermann, J.L.: Plasma medicine: an introductory review. New J. Phys. 11, 115012  (2009)

    Google Scholar 

  38. Weltmann, K.D., Kindel, E., von Woedtke, T., Hahnel, M., Stieber, M., Brandenburg, R.: Atmospheric-pressure plasma sources: prospective tools for plasma medicine. Pure Appl. Chem. 82, 1223–1237 (2010)

    Article  Google Scholar 

  39. Wende, K., Landsberg, K., Lindequist, U., Weltmann, K.D., von Woedtke, T.: Distinctive activity of a nonthermal atmospheric-pressure plasma jet on eukaryotic and prokaryotic cells in a cocultivation approach of keratinocytes and microorganisms. IEEE Trans. Plasma Sci. 38, 2479–2485 (2010)

    Article  Google Scholar 

  40. Weltmann, K.D., von Woedtke, T.: Basic requirements for plasma sources in medicine. Eur. Phys. J. Appl. Phys. 55, 13807 (2011)

    Article  Google Scholar 

  41. Daeschlein, G., von Woedtke, T., Kindel, E., Brandenburg, R., Weltmann, K.D., Junger, M.: Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Process. Polym. 7, 224–230 (2010)

    Article  Google Scholar 

  42. Lloyd, G., Friedman, G., Jafri, S., Schultz, G., Friedman, A., Harding, K.: Gas Plasma: medical uses and developments in wound care. Plasma Process. Polym. 7, 194–211 (2010)

    Article  Google Scholar 

  43. Sladek, R.E.J., Stoffels, E., Walraven, R., Tielbeek, P.J.A., Koolhoven, R.A.: Plasma treatment of dental cavities: a feasibility study. IEEE Trans. Plasma Sci. 32, 1540–1543 (2004)

    Article  Google Scholar 

  44. Villeger, S., Ricard, A., Sixou, M.: Sterilization of dental bacteria in a N2-O2 microwaves post-discharge, at low pressure: influence of temperature. Eur. Phys. J. Appl. Phys. 26, 203–208 (2004)

    Article  Google Scholar 

  45. Sunka, P., Babicky, V., Clupek, M., Benes, J., Pouckova, P.: Localized damage of tissues induced by focused shock waves. IEEE Trans. Plasma Sci. 32, 1609–1613 (2004)

    Article  Google Scholar 

  46. Sensenig, R., Kalghatgi, S., Cerchar, E., Fridman, G., Shereshevsky, A., Torabi, B., Arjunan, K.P., Podolsky, E., Fridman, A., Friedman, G., Azizkhan-Clifford, J., Brooks, A.D.: Non-thermal plasma induces apoptosis in melanoma cells via production of intracellular reactive oxygen species. Ann. Biomed. Eng. 39, 674–687 (2011)

    Article  Google Scholar 

  47. Fridman, G., Shereshevsky, A., Jost, M.M., Brooks, A.D., Fridman, A., Gutsol, A., Vasilets, V., Friedman, G.: Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem. Plasma Process. 27, 163–176 (2007)

    Article  Google Scholar 

  48. Hall, E.H., Schoenbach, K.H., Beebe, S.J.: Nanosecond pulsed electric fields induce apoptosis in p53-wildtype and p53-null HCT116 colon carcinoma cells. Apoptosis 12, 1721–1731 (2007)

    Article  Google Scholar 

  49. Lukes, P., Sunka, P., Hoffer, P., Stelmashuk, V., Pouckova, P., Zadinova, M., Zeman, J., Dibdiak, L., Kolarova, H., Tomankova, K., Binder, S., Benes, J.: Focused tandem shock waves in water and their potential application in cancer treatment. Shock Waves 24, 51–57 (2014)

    Article  Google Scholar 

  50. Coleman, A.J., Saunders, J.E.: A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy. Ultrasonics 31, 75–89 (1993)

    Article  Google Scholar 

  51. Bailey, M.R., Khokhlova, V.A., Sapoznikov, O.A., Kargl, S.G., Crum, L.A.: Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoust. Phys. 49, 369–388 (2003)

    Article  Google Scholar 

  52. Sunka, P., Babicky, V., Clupek, M., Fuciman, M., Lukes, P., Simek, M., Benes, J., Locke, B., Majcherova, Z.: Potential applications of pulse electrical discharges in water. Acta Phys. Slovaca 54, 135–145 (2004)

    Google Scholar 

  53. Loske, A.M., Prieto, F.E., Fernandez, F., van Cauwelaert, J.: Tandem shock wave cavitation enhancement for extracorporeal lithotripsy. Phys. Med. Biol. 47, 3945–3957 (2002)

    Article  Google Scholar 

  54. Stalder, K.R., McMillen, D.F., Woloszko, J.: Electrosurgical plasmas. J. Phys. D. Appl. Phys. 38, 1728–1738 (2005)

    Article  Google Scholar 

  55. Stalder, K.R., Woloszko, J.: Some physics and chemistry of electrosurgical plasma discharges. Contrib. Plasma Phys. 47, 64–71 (2007)

    Article  Google Scholar 

  56. Graves, D.B.: The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D. Appl. Phys. 45, 263001 (2012)

    Article  Google Scholar 

  57. Lukes, P., Dolezalova, E., Sisrova, I., Clupek, M.: Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci. Technol. 23, 015019 (2014)

    Article  Google Scholar 

  58. Edebo, L., Selin, I.: Effect of pressure shock wave and some electrical quantities in microbicidal effect of transient electric arcs in aqueous systems. J. Gen. Microbiol. 50, 253–259 (1968)

    Article  Google Scholar 

  59. Sato, M., Ohgiyama, T., Clements, J.S.: Formation of chemical species and their effects on microorganisms using a pulsed high-voltage discharge in water. IEEE Trans. Ind. Appl. 32, 106–112 (1996)

    Article  Google Scholar 

  60. Ching, W.K., Colussi, A.J., Sun, H.J., Nealson, K.H., Hoffmann, M.R.: Escherichia coli disinfection by electrohydraulic discharges. Environ. Sci. Technol. 35, 4139–4144 (2001)

    Article  Google Scholar 

  61. Abou-Ghazala, A., Katsuki, S., Schoenbach, K.H., Dobbs, F.C., Moreira, K.R.: Bacterial decontamination of water by means of pulsed-corona discharges. IEEE Trans. Plasma Sci. 30, 1449–1453 (2002)

    Article  Google Scholar 

  62. Li, Z., Sakai, S., Yamada, C., Wang, D., Chung, S., Lin, X., Namihira, T., Katsuki, S., Akiyama, H.: The effects of pulsed streamerlike discharge on cyanobacteria cells. IEEE Trans. Plasma Sci. 34, 1719–1725 (2006)

    Article  Google Scholar 

  63. Li, Z., Ohno, T., Sato, H., Sakugawa, T., Akiyama, H., Kunitomo, S., Sasaki, K., Ayukawa, M., Fujiwara, H.: A method of water-bloom prevention using underwater pulsed streamer discharge. J. Environ. Sci. Health A 43, 1209–1214 (2008)

    Article  Google Scholar 

  64. Lukes, P., Clupek, M., Babicky, V., Sunka, P.: Ultraviolet radiation from the pulsed corona discharge in water. Plasma Sources Sci. Technol. 17, 024012 (2008)

    Article  Google Scholar 

  65. Brisset, J.L., Hnatiuc, E.: Peroxynitrite: a re-examination of the chemical properties of non-thermal discharges burning in air over aqueous solutions. Plasma Chem. Plasma Process. 32, 655–674 (2012)

    Article  Google Scholar 

  66. Jiang, C., Carter, C.: Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy. Plasma Sources Sci. Technol. 23, 065006 (2014)

    Google Scholar 

  67. Deng, X.T., Shi, J.J., Chen, H.L., Kong, M.G.: Protein destruction by atmospheric pressure glow discharges. Appl. Phys. Lett. 90, 013903 (2007)

    Article  Google Scholar 

  68. Goree, J., Liu, B., Drake, D., Stoffels, E.: Killing of S-mutans bacteria using a plasma needle at atmospheric pressure. IEEE Trans. Plasma Sci. 34, 1317–1324 (2006)

    Article  Google Scholar 

  69. Weltmann, K.D., Brandenburg, R., von Woedtke, T., Ehlbeck, J., Foest, R., Stieber, M., Kindel, E.: Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs). J. Phys. D. Appl. Phys. 41, 194008 (2008)

    Article  Google Scholar 

  70. Woloszko, J., Stalder, K.R., Brown, I.G.: Plasma characteristics of repetitively-pulsed electrical discharges in saline solutions used for surgical procedures. IEEE Trans. Plasma Sci. 30, 1376–1383 (2002)

    Article  Google Scholar 

  71. Schaper, L., Graham, W.G., Stalder, K.R.: Vapour layer formation by electrical discharges through electrically conducting liquids-modelling and experiment. Plasma Sources Sci. Technol. 20, 034003 (2011)

    Article  Google Scholar 

  72. Schaper, L., Stalder, K.R., Graham, W.G.: Plasma production in electrically conducting liquids. Plasma Sources Sci. Technol. 20, 034004 (2011)

    Article  Google Scholar 

  73. Rentschler, H.C., Nagy, R., Mouromseff, G.: Bactericidal effect of ultraviolet radiation. J. Bacteriol. 41, 745–774 (1941)

    Google Scholar 

  74. Barnard, J.E., Morgan, H.D.R.: The physical factors in phototherapy. Br. Med. J. 2, 1269–1271 (1903)

    Article  Google Scholar 

  75. Hijnen, W.A., Beerendonk, E.F., Medema, G.J.: Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res. 40, 3–22 (2006)

    Article  Google Scholar 

  76. Willberg, D.M., Lang, P.S., Hochemer, R.H., Kratel, A., Hoffmann, M.R.: Degradation of 4-chlorophenol, 3,4-dichloroaniline, and 2,4,6-trinitrotoluene in an electrohydraulic discharge reactor. Environ. Sci. Technol. 30, 2526–2534 (1996)

    Article  Google Scholar 

  77. Lang, P.S., Ching, W.-K., Willberg, D.M., Hoffmann, M.R.: Oxidative degradation of 2,4,6-trinitrotoluene by ozone in an electrohydraulic discharge reactor. Environ. Sci. Technol. 32, 3142–3148 (1998)

    Article  Google Scholar 

  78. Martin, E.A.: Experimental investigation of a high-energy density, high-pressure arc plasma. J. Appl. Phys. 31, 255–267 (1960)

    Article  Google Scholar 

  79. Robinson, J.W., Ham, M., Balaster, A.N.: Ultraviolet radiation from electrical discharges in water. J. Appl. Phys. 44, 72–75 (1973)

    Article  Google Scholar 

  80. Sun, B., Kunitomo, S., Igarashi, C.: Characteristics of ultraviolet light and radicals formed by pulsed discharge in water. J. Phys. D. Appl. Phys. 39, 3814 (2006)

    Article  Google Scholar 

  81. Lukes, P., Locke, B.R.: Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor. J. Phys. D. Appl. Phys. 38, 4074–4081 (2005)

    Article  Google Scholar 

  82. Shuaibov, A.K., Shimon, L.L., Dashchenko, A.I., Shevera, I.V.: A water-vapor electric-discharge vacuum ultraviolet source. Tech. Phys. Lett. 27, 642–643 (2001)

    Article  Google Scholar 

  83. Shuaibov, A.K., Minya, A.J., Gomoki, Z.T., Shevera, I.V., Gritsak, R.V.: Vacuum-UV emitter using low-pressure discharge in helium-water vapor mixture. Tech. Phys. Lett. 37, 126–127 (2011)

    Article  Google Scholar 

  84. van Gils, C.A.J., Hofmann, S., Boekema, B., Brandenburg, R., Bruggeman, P.J.: Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. J. Phys. D. Appl. Phys. 46, 175203 (2013)

    Article  Google Scholar 

  85. Reuter, S., Winter, J., Schmidt-Bleker, A., Schroeder, D., Lange, H., Knake, N., Schulz-von der Gathen, V., Weltmann, K.-D.: Atomic oxygen in a cold argon plasma jet: TALIF spectroscopy in ambient air with modelling and measurements of ambient species diffusion. Plasma Sources Sci. Technol. 21, 024005 (2012)

    Article  Google Scholar 

  86. Zastawny, H.Z., Romat, H., Karpel vel Leitner, N., Chang, J.S.: Pulsed arc discharges for water treatment and disinfection. In Electrostatics 2003, vol. 137, pp. 325–330. IOP Publishers, Bristol (2004)

    Google Scholar 

  87. Delius, M.: Extracorporeal shock waves: bioeffects and mechanisms of action. In: Srivastava, R.C., Leutloff, D., Takayama, K., Grönig, H. (eds.) Shock Focussing Effect in Medical Science and Sonoluminescence, pp. 211–226. Springer, Berlin (2003)

    Chapter  Google Scholar 

  88. Loske, A.M., Campos-Guillen, J., Fernandez, F., Castano-Tostado, E.: Enhanced shock wave-assisted transformation of Escherichia coli. Ultrasound Med. Biol. 37, 502–510 (2011)

    Article  Google Scholar 

  89. Hosseini, S.H.R., Iwasaki, S., Sakugawa, T., Akiyama, H.: Characteristics of micro underwater shock waves produced by pulsed electric discharges for medical applications. J. Korean Phys. Soc. 59, 3526–3530 (2011)

    Article  Google Scholar 

  90. Hosseini, S.H.R., Menezes, V., Moosavi-Nejad, S., Ohki, T., Nakagawa, A., Tominaga, T., Takayama, K.: Development of shock wave assisted therapeutic devices and establishment of shock wave therapy. Minim. Invasive Ther. Allied Technol. 15, 230–240 (2006)

    Article  Google Scholar 

  91. Russo, P., Stephenson, R.A., Mies, C., Huryk, R., Heston, W.D., Melamed, M.R., Fair, W.R.: High energy shock waves suppress tumor growth in vitro and in vivo. J. Urol. 135, 626–628 (1986)

    Google Scholar 

  92. Brauner, T., Brummer, F., Hulser, D.F.: Histopathology of shock wave treated tumor cell suspensions and multicell tumor spheroids. Ultrasound Med. Biol. 15, 451–460 (1989)

    Article  Google Scholar 

  93. Kohri, K., Uemura, T., Iguchi, M., Kurita, T.: Effect of high energy shock waves on tumor cells. Urol. Res. 18, 101–105 (1990)

    Article  Google Scholar 

  94. Clayman, R.V., Long, S., Marcus, M.: High-energy shock waves: in vitro effects. Am. J. Kidney Dis. 17, 436–444 (1991)

    Article  Google Scholar 

  95. Lifshitz, D.A., Williams, J.C., Sturtevant, B., Connors, B.A., Evan, A.P., McAteer, J.A.: Quantitation of shock wave cavitation damage in vitro. Ultrasound Med. Biol. 23, 461–471 (1997)

    Article  Google Scholar 

  96. Randazzo, R.F., Chaussy, C.G., Fuchs, G.J., Bhuta, S.M., Lovrekovich, H., de Kernion, J.B.: The in vitro and in vivo effects of extracorporeal shock waves on malignant cells. Urol. Res. 16, 419–426 (1988)

    Article  Google Scholar 

  97. Holmes, R.P., Yeaman, L.I., Li, W.J., Hart, L.J., Wallen, C.A., Woodruff, R.D., McCullough, D.L.: The combined effects of shock waves and cisplatin therapy on rat prostate tumors. J. Urol. 144, 159–163 (1990)

    Google Scholar 

  98. Lee, K.E., Smith, P., Cockett, A.T.: Influence of high-energy shock waves and cisplatin on antitumor effect in murine bladder cancer. Urology 36, 440–444 (1990)

    Article  Google Scholar 

  99. Gambihler, S., Delius, M.: In vitro interaction of lithotripter shock waves and cytotoxic drugs. Br. J. Cancer 66, 69–73 (1992)

    Article  Google Scholar 

  100. Mastikhin, I.V., Teslenko, V.S., Nikolin, V.P., Kolosova, N.G., Gorchakov, V.N.: Tumor growth inhibition by combined action of shock waves and cytostatics. In: Loske, A.M. (ed.) New Trends in Shock Wave Applications to Medicine and Biotechnology, pp. 151–164. Research Signpost, Kerala (2010)

    Google Scholar 

  101. Kato, M., Ioritani, N., Suzuki, T., Kambe, M., Inaba, Y., Watanabe, R., Sasano, H., Orikasa, S.: Mechanism of anti-tumor effect of combination of bleomycin and shock waves. Jpn. J. Cancer Res. 91, 1065–1072 (2000)

    Article  Google Scholar 

  102. Delius, M., Denk, R., Berding, C., Liebich, H.G., Jordan, M., Brendel, W.: Biological effects of shock waves: cavitation by shock waves in piglet liver. Ultrasound Med. Biol. 16, 467–472 (1990)

    Article  Google Scholar 

  103. Huber, P., Debus, J., Peschke, P., Hahn, E.W., Lorenz, W.J.: In vivo detection of ultrasonically induced cavitation by a fibre-optic technique. Ultrasound Med. Biol. 20, 811–825 (1994)

    Article  Google Scholar 

  104. Coleman, A.J., Choi, M.J., Saunders, J.E.: Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy. Ultrasound Med. Biol. 22, 1079–1087 (1996)

    Article  Google Scholar 

  105. Cleveland, R.O., Sapozhnikov, O.A., Bailey, M.R., Crum, L.A.: A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro. J. Acoust. Soc. Am. 107, 1745–1758 (2000)

    Article  Google Scholar 

  106. Zhong, P., Zhou, Y., Zhu, S.: Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. Ultrasound Med. Biol. 27, 119–134 (2001)

    Article  Google Scholar 

  107. Lukes, P., Zeman, J., Horak, V., Hoffer, P., Pouckova, P., Holubova, M., Hosseini, S.H.R., Akiyama, H., Sunka, P., Benes, J.: In vivo effects of focused shock waves on tumor tissue visualized by fluorescence staining techniques. Bioelectrochemistry 103, 103–110 (2015)

    Article  Google Scholar 

  108. Lukes, P., Fernández, F., Gutiérrez-Aceves, J., Fernández, E., Alvarez, U.M., Sunka, P., Loske, A.M.: Tandem shock waves in medicine and biology: a review of potential applications and successes. Shock Waves 26, 1–23 (2016)

    Article  Google Scholar 

  109. Foyer, C.H., Noctor, G.: Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox Signal. 11, 861–905 (2009)

    Article  Google Scholar 

  110. Novo, E., Parola, M.: Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair 1, 5 (2008)

    Article  Google Scholar 

  111. Graves, D.B.: The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D. Appl. Phys. 45, 263001 (2012)

    Google Scholar 

  112. Yonemori, S., Nakagawa, Y., Ono, R., Oda, T.: Measurement of OH density and air-helium mixture ratio in an atmospheric-pressure helium plasma jet. J. Phys. D. Appl. Phys. 45, 225202 (2012)

    Google Scholar 

  113. Bruggeman, P., Cunge, G., Sadeghi, N.: Absolute OH density measurements by broadband UV absorption in diffuse atmospheric-pressure He-H2O RF glow discharges. Plasma Sources Sci. Technol. 21, 035019 (2012)

    Google Scholar 

  114. Marnett, L.J.: Lipid peroxidation – DNA damage by malondialdehyde. Mutat. Res. Fundam. Mol. Mech. Mugag. 424, 83–95 (1999)

    Article  Google Scholar 

  115. Machala, Z., Chladekova, L., Pelach, M.: Plasma agents in bio-decontamination by dc discharges in atmospheric air. J. Phys. D. Appl. Phys. 43, 222001 (2010)

    Article  Google Scholar 

  116. Davies, M.J. Protein oxidations: Concepts, mechanisms and new insights. Free radical school presentations. Society for Free Radical Biology and Medicine http://www.sfrbm.org/frs/Davies2003.pdf. 31th Oct 2011

  117. Ellerweg, D., Benedikt, J., von Keudell, A., Knake, N., Schulz-von der Gathen, V.: Characterization of the effluent of a He/O2 microscale atmospheric pressure plasma jet by quantitative molecular beam mass spectrometry. New J. Phys. 12, 013021 (2010)

    Google Scholar 

  118. Ellerweg, D., von Keudell, A., Benedikt, J.: Unexpected O and O3 production in the effluent of He/O2 microplasma jets emanating into ambient air. Plasma Sources Sci. Technol. 21, 034019 (2012)

    Google Scholar 

  119. Jiang, C., Puech, V., Magne, L., Jeanney, P.: Absolute ozone measurements for a low-energy pulsed plasma needle. In The 62nd Gaseous Electronics Conference, Saratoga Springs, NY, USA (2009)

    Google Scholar 

  120. Jeong, J.Y., Park, J., Henins, I., Babayan, S.E., Tu, V.J., Selwyn, G.S., Ding, G., Hicks, R.F.: Reaction chemistry in the afterglow of an oxygen-helium, atmospheric-pressure plasma. J. Phys. Chem. A 104, 8027–8032 (2000)

    Article  Google Scholar 

  121. Staehelin, J., Hoigne, J.: Decomposition of ozone in water – rate of initiation by hydroxide ions and hydrogen peroxide. Environ. Sci. Technol. 16, 676–681 (1982)

    Article  Google Scholar 

  122. Hoigne, J., Bader, H., Haag, W.R., Staehelin, J.: Rate constants of reactions of ozone with organic and inorganic compounds in water. 3. Inorganic compounds and radicals. Water Res. 19, 993–1004 (1985)

    Article  Google Scholar 

  123. Locke, B.R., Shih, K.Y.: Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sources Sci. Technol. 20, 034006 (2011)

    Article  Google Scholar 

  124. Walling, C.: Fentons reagent revisited. Accounts Chem. Res. 8, 125–131 (1975)

    Article  Google Scholar 

  125. Keyer, K., Gort, A.S., Imlay, J.A.: Superoxide and the production of oxidative DNA damage. J. Bacteriol. 177, 6782–6790 (1995)

    Google Scholar 

  126. Pericone, C.D., Park, S., Imlay, J.A., Weiser, J.N.: Factors contributing to hydrogen peroxide resistance in Streptococcus pneumoniae include pyruvate oxidase (SpxB) and avoidance of the toxic effects of the Fenton reaction. J. Bacteriol. 185, 6815–6825 (2003)

    Article  Google Scholar 

  127. LeBlanc, J.J., Davidson, R.J., Hoffman, P.S.: Compensatory functions of two alkyl hydroperoxide reductases in the oxidative defense system of Legionella pneumophila. J. Bacteriol. 188, 6235–6244 (2006)

    Article  Google Scholar 

  128. Sabri, M., Leveille, S., Dozois, C.M.: A SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide. Microbiology (UK) 152, 745–758 (2006)

    Article  Google Scholar 

  129. Lukes, P., Clupek, M., Babicky, V., Vykouk, T.: Bacterial inactivation by pulsed corona discharge in water. In 2007 IEEE Pulsed Power Conference, Albuquerque, NM, vol. 1–4, pp 320–323 (2007)

    Google Scholar 

  130. Stoffels, E., Gonzalvo, Y.A., Whitmore, T.D., Seymour, D.L., Rees, J.A.: A plasma needle generates nitric oxide. Plasma Sources Sci. Technol. 15, 501–506 (2006)

    Article  Google Scholar 

  131. Pavlovich, M.J., Clark, D.S., Graves, D.B.: Quantification of air plasma chemistry for surface disinfection. Plasma Sources Sci. Technol. 23, 065036 (2014)

    Google Scholar 

  132. Eliasson, B., Kogelschatz, U.: Modeling and applications of silent discharge Plasmas. IEEE Trans. Plasma Sci. 19, 309–323 (1991)

    Article  Google Scholar 

  133. Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., Freeman, B.A.: Apparent hydroxyl radical production by peroxynitrite – implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. U. S. A. 87, 1620–1624 (1990)

    Article  Google Scholar 

  134. Beckman, J.S., Koppenol, W.H.: Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am. J. Physiol. Cell Physiol. 271, C1424–C1437 (1996)

    Google Scholar 

  135. Goldstein, S., Squadrito, G.L., Pryor, W.A., Czapski, G.: Direct and indirect oxidations by peroxynitrite, neither involving the hydroxyl radical. Free Rad. Biol. Med. 21, 965–974 (1996)

    Article  Google Scholar 

  136. Squadrito, G.L., Pryor, W.A.: Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Rad. Biol. Med. 25, 392–403 (1998)

    Article  Google Scholar 

  137. Pacher, P., Beckman, J.S., Liaudet, L.: Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007)

    Article  Google Scholar 

  138. Denicola, A., Souza, J.M., Radi, R.: Diffusion of peroxynitrite across erythrocyte membranes. Proc. Natl. Acad. Sci. U. S. A. 1998, 3566–3571 (1998)

    Article  Google Scholar 

  139. Pryor, W.A., Squadrito, G.L.: The chemistry of peroxynitrite: a product from the reaction of nitric-oxide with superoxide. Am. J. Physiol. Lung Cell. Mol. Physiol. 268, L699–L722 (1995)

    Google Scholar 

  140. Beckman, J.S.: Peroxynitrite versus hydroxyl radical: The role of nitric oxide in superoxide dependent cerebral injury. In: Chiueh, C.C., Gilbert, D.L., Colton, C.A. (eds.) The Neurobiology of NO and OH, Ann. New York Acad. Sci., pp. 69–75 (1994)

    Google Scholar 

  141. Hutchinson, F.: The distance that a radical formed by ionizing radiation can diffuse in a yeast cell. Radiat. Res. 7, 473–483 (1957)

    Article  Google Scholar 

  142. Koppenol, W.: The basic chemistry of nitrogen monoxide and peroxynitrite. Free Rad. Biol. Med. 25, 385–391 (1998)

    Article  Google Scholar 

  143. Pryor, W., Squadrito, G.: The chemistry of peroxynitrite: the good, the bad and the ugly. Am. J. Physiol. 268, L699–L722 (1995)

    Google Scholar 

  144. Packer, L.: Nitric Oxide Part C: Biological and Antioxidant Activities. Section III – Peroxynitrite, pp. 279–381. Academic, San Diego (1999)

    Google Scholar 

  145. Laskin, D.L.: Oxidative/Nitrosative Stress and Disease. Ann. New York Acad. Sci. 1203, Wiley, New York (2010)

    Google Scholar 

  146. Seago, N., Clark, D., Miller, M.: Role of inducible oxide synthase (NOS) and peroxynitrite in gut inflammation. Inflamm. Res. 44, S153–S154 (1995)

    Article  Google Scholar 

  147. Kirkpatrick, M.J., Locke, B.R.: Effects of platinum electrode on hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge. Ind. Eng. Chem. Res. 45, 2138–2142 (2006)

    Article  Google Scholar 

  148. Sharma, A.K., Locke, B.R., Arce, P., Finney, W.C.: A preliminary-study of pulsed streamer corona discharge for the degradation of phenol in aqueous-solutions. Hazard. Waste Hazard. Mater. 10, 209–219 (1993)

    Article  Google Scholar 

  149. Lukes, P., Clupek, M., Babicky, V., Sisrova, I., Janda, V.: The catalytic role of tungsten electrode material in the plasmachemical activity of a pulsed corona discharge in water. Plasma Sources Sci. Technol. 20, 034011 (2011)

    Article  Google Scholar 

  150. Anbar, M., Taube, H.: Interaction of nitrous acid with hydrogen peroxide and with water. J. Am. Chem. Soc. 76, 6243–6247 (1954)

    Article  Google Scholar 

  151. Kamgang-Youbi, G., Herry, J.M., Bellon-Fontaine, M.N., Brisset, J.L., Doubla, A., Naitali, M.: Evidence of temporal postdischarge decontamination of bacteria by gliding electric discharges: application to Hafnia alvei. Appl. Environ. Microbiol. 73, 4791–4796 (2007)

    Article  Google Scholar 

  152. Kamgang-Youbi, G., Herry, J.M., Brisset, J.L., Bellon-Fontaine, M.N., Doubla, A., Naitali, M.: Impact on disinfection efficiency of cell load and of planktonic/adherent/detached state: case of Hafnia alvei inactivation by Plasma Activated Water. Appl. Microbiol. Biotechnol. 81, 449–457 (2008)

    Article  Google Scholar 

  153. Kamgang-Youbi, G., Herry, J.M., Meylheuc, T., Brisset, J.L., Bellon-Fontaine, M.N., Doubla, A., Naitali, M.: Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Lett. Appl. Microbiol. 48, 13–18 (2009)

    Article  Google Scholar 

  154. Naitali, M., Kamgang-Youbi, G., Herry, J.M., Bellon-Fontaine, M.N., Brisset, J.L.: Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water. Appl. Environ. Microbiol. 76, 7662–7664 (2010)

    Article  Google Scholar 

  155. Oehmigen, K., Hahnel, M., Brandenburg, R., Wilke, C., Weltmann, K.D., von Woedtke, T.: The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process. Polym. 7, 250–257 (2010)

    Article  Google Scholar 

  156. Oehmigen, K., Winter, J., Hahnel, M., Wilke, C., Brandenburg, R., Weltmann, K.D., von Woedtke, T.: Estimation of possible mechanisms of Escherichia coli inactivation by plasma treated sodium chloride solution. Plasma Process. Polym. 8, 904–913 (2011)

    Article  Google Scholar 

  157. Traylor, M.J., Pavlovich, M.J., Karim, S., Hait, P., Sakiyama, Y., Clark, D.S., Graves, D.B.: Long-term antibacterial efficacy of air plasma-activated water. J. Phys. D. Appl. Phys. 44, 472001 (2011)

    Article  Google Scholar 

  158. Ercan, U.K., Wang, H., Ji, H.F., Fridman, G., Brooks, A.D., Joshi, S.G.: Nonequilibrium plasma-activated antimicrobial solutions are broad-spectrum and retain their efficacies for extended period of time. Plasma Process. Polym. 10, 544–555 (2013)

    Article  Google Scholar 

  159. Brisset, J.L., Moussa, D., Doubla, A., Hnatiuc, E., Hnatiuc, B., Kamgang-Youbi, G., Herry, J.M., Naitali, M., Bellon-Fontaine, M.N.: Chemical reactivity of discharges and temporal post-discharges in plasma treatment of aqueous media: Examples of gliding discharge treated solutions. Ind. Eng. Chem. Res. 47, 5761–5781 (2008)

    Article  Google Scholar 

  160. Pavlovich, M.J., Chang, H.W., Sakiyama, Y., Clark, D.S., Graves, D.B.: Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water. J. Phys. D. Appl. Phys. 46, 145202 (2013)

    Article  Google Scholar 

  161. Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd edn. Wiley, Hoboken (2006)

    Google Scholar 

  162. Park, J.Y., Lee, Y.N.: Solubility and decomposition kinetics of nitrous acid in aqueous solution. J. Phys. Chem. 92, 6294–6302 (1988)

    Article  Google Scholar 

  163. Naitali, M., Herry, J.M., Hnatiuc, E., Kamgang, G., Brisset, J.L.: Kinetics and bacterial inactivation induced by peroxynitrite in electric discharges in air. Plasma Chem. Plasma Process. 32, 675–692 (2012)

    Article  Google Scholar 

  164. Katsumura, Y.: NO2 and NO3 radicals in radiolysis of nitric acid solutions. In: Alfassi, Z.B. (ed.) The Chemistry of Free Radicals: N-Centered Radicals, pp. 393–412. Wiley, Chichester (1998)

    Google Scholar 

  165. Peyton, G.R., Glaze, W.H.: Destruction of pollutants in water with ozone in combination with ultraviolet-radiation. 3. Photolysis of aqueous ozone. Environ. Sci. Technol. 22, 761–767 (1988)

    Article  Google Scholar 

  166. Hunt, J.P., Taube, H.: The photochemical decomposition of hydrogen peroxide – Quantum yields, tracer and fractionation effects. J. Am. Chem. Soc. 74, 5999–6002 (1952)

    Article  Google Scholar 

  167. Baxendale, J.H., Wilson, J.A.: The photolysis of hydrogen peroxide at high light intensities. Trans. Farad. Soc. 53, 344–356 (1957)

    Article  Google Scholar 

  168. Tarr, M.A.: Chemical Degradation Methods for Wastes and Pollutants: Environmental and Industrial Applications. Marcel Dekker, New York (2003)

    Book  Google Scholar 

  169. Schunck, T., Bieth, F., Pinguet, S., Delmote, P.: Penetration and propagation into biological matter and biological effects of high-power ultra-wideband pulses: a review. Electromagn. Biol. Med. 30, 1–18 (2014)

    Google Scholar 

  170. Ramundo-Orlando, A., Gallerano, G.P.: Terahertz radiation effects and biological applications. J. Infrared Milli. Terahz. Waves 30(12), 1308–1318 (2009)

    Google Scholar 

  171. Son, J.H.: Principle and applications of terahertz molecular imaging. Nanotechnology 24, 214001 (2013)

    Article  Google Scholar 

  172. Eisele, H.: Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100–300 GHz frequency range and above. IEEE Trans. Microwave Theory Tech. 48(4), 626–631 (2000)

    Article  Google Scholar 

  173. Williams, B.S., Kumar, S., Callebaut, H., Hu, Q., Reno, J.L.: Terahertz quantum cascade laser operating up to 137 K. Appl. Phys. Lett. 83, 5142–5144 (2003)

    Article  Google Scholar 

  174. Williams, B.S., Kumar, S., Hu, Q., Reno, J.L.: Resonant-phonon terahertz quantum-cascade laser operating at 2.1 THz (λ= 141 μm). Electr. Lett. 40(7), 431–432 (2004)

    Article  Google Scholar 

  175. Crocker, A., Gebbie, H.A., Kimmitt, M.F., Mathias, I.E.S.: Stimulated emission in the far infrared. Nature 201, 250–251 (1964)

    Article  Google Scholar 

  176. Auston, D.H., Cheung, K.P., Valdmanis, J.A., Kleinman, D.A.: Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett. 53, 1555–1558 (1984)

    Article  Google Scholar 

  177. Fattinger, C., Grischkowsky, D.: Terahertz beams. Appl. Phys. Lett. 54, 490–492 (1989)

    Article  Google Scholar 

  178. Jiang, Z., Zhang, X.C.: Terahertz imaging via electrooptic effect. IEEE. Trans. Microwave Theory Tech. 47(12), 2644–2650 (1999)

    Article  Google Scholar 

  179. Wu, Q., Hewitt, T.D., Zhang, X.C.: Two-dimensional electro-optic imaging of THz beams. Appl. Phys. Lett. 69, 1026–1028 (1996)

    Article  Google Scholar 

  180. Brown, E.R., McIntosh, K.A., Nichols, K.B., Dennis, C.L.: Photomixing up to 3.8 THz in low-temperature-grown GaAs. Appl. Phys. Lett. 66, 285–287 (1995)

    Article  Google Scholar 

  181. Thumm, M.: State-of-the-Art of High Power Gyro-Devices and Free Electron Masers. KIT Scientific Reports 7641, KIT Scientific Publishing, Karlsruhe, Germany (2012)

    Google Scholar 

  182. Gold, S.H., Nusinovich, G.S.: Review of high power microwave source research. Rev. Sci. Instrum. 68, 3945–3974 (1997)

    Article  Google Scholar 

  183. Staprans, A., McCune, E., Ruetz, J.: High-power linear-beam tubes. Proc. IEEE 61(3), 299–330 (1973)

    Article  Google Scholar 

  184. Motz, H.: Applications of the radiation from fast electron beams. J. Appl. Phys. 22(5), 527–535 (1951)

    Article  MATH  Google Scholar 

  185. Phillips, R.M.: History of the ubitron. Nucl. Instr. Meth. Phys. Res. A272, 1–9 (1988)

    Article  Google Scholar 

  186. Deacon, D.A.G., Elias, L.R., Madey, J.M.J., Ramian, G.J., Schwettman, H.A., Smith, T.I.: First operation of a free-electron laser. Phys. Rev. Lett. 38, 892–893 (1977)

    Article  Google Scholar 

  187. Ciocci, F., Doria, A., Gallerano, G.P., Giabbai, I., Kimmitt, M.F., Messina, G., Renieri, A., Walsh, J.E.: Observation of coherent millimeter and submillimeter emission from a microtron-driven Cherenkov free-electron laser. Phys. Rev. Lett. 66, 699–702 (1991)

    Article  Google Scholar 

  188. Doucas, G., Kimmitt, M.F., Doria, A., Gallerano, G.P., Giovenale, E., Messina, G., Andrews, H.L., Brownell, J.H.: Determination of longitudinal bunch shape by means of coherent Smith-Purcell radiation. Phys. Rev. ST Accel. Beams 5(7), 072802 (2002)

    Article  Google Scholar 

  189. Gallerano, G.P., Doria, A., Giovenale, E., Renieri, A.: Compact free electron lasers: from cerenkov to waveguide FELs. Infrared Phys. Tech. 40, 161–174 (1999)

    Article  Google Scholar 

  190. Doria, A., Gallerano, G.P., Giovenale, E., Letardi, S., Messina, G., Ronsivalle, C.: Enhancement of coherent emission by energy-phase correlation in a bunched electron beam. Phys. Rev. Lett. 80, 2841–2844 (1998)

    Article  Google Scholar 

  191. Doria, A., Gallerano, G.P., Giovenale, E., Messina, G., Spassovsky, I.: Enhanced coherent emission of THz radiation by energy-phase correlation in a bunched electron beam. Phys. Rev. Lett. 93, 264801 (2004)

    Article  Google Scholar 

  192. Doria, A., Gallerano, G.P., Giovenale, E., Messina, G., Lai, A., Ramundo-Orlando, A., Sposato, V., D’Arienzo, M., Perrotta, A., Romanò, M., Sarti, M., Scarfì, M.R., Spassovsky, I., Zeni, O.: THz radiation studies on biological systems at the ENEA FEL Facility. Infrared Phys. 45, 339–347 (2004)

    Article  Google Scholar 

  193. Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) Opinion on Potential health effects of exposure to electromagnetic fields (EMF), available at http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_041.pdf

  194. Singh, S., Kapoor, N.: Health Implications of electromagnetic fields, mechanisms of action, and research needs. Adv. Biol. 198609 (2014)

    Google Scholar 

  195. Seaman, R.L.: Effects of exposure of animals to ultra-wideband pulses. Health Phys. 92(6), 629–634 (2007)

    Article  Google Scholar 

  196. Zeng, L., Zou, C., Zhang, J., Wang, J., Miao, X., Ren, D., Li, Y., Guo, G.: Perforate on CHO cell membranes induced by electromagnetic pulses irradiation observed by atomic force microscopy. Afr. J. Biotechnol. 8(12), 2796–2781 (2009)

    Google Scholar 

  197. Kolb, J.F., Xiao, S., Camp, J.T., Migliaccio, M., Bajracharya, C., Schoenbach, K.H.: Sub-nanosecond electrical pulses for medical therapies and imaging, Proceedings of the 4th European Conference on Antennas and Propagation (EuCAP), Barcelona, Spain 12–16 April 2010

    Google Scholar 

  198. Jordan, D.W., Gilgenbach, R.M., Uhler, M.D., Gates, L.H., Lau, Y.Y.: Effect of pulsed, high-power radiofrequency radiation on electroporation of mammalian cells. IEEE. Trans. Plasma Sci. 32(4), 1573–1578 (2004)

    Article  Google Scholar 

  199. Jordan, D.W., Uhler, M.D., Gilgenbach, R.M., Lau, Y.Y.: Enhancement of cancer chemotherapy in vitro by intense ultrawideband electric field pulses. J. Appl. Phys. 99, 094701 (2006)

    Article  Google Scholar 

  200. Macaire, S., Catrain, A., Tortel, S., Joly, J.C., Girard, S., Bonnet, P., Vian, A.: Radiated ultrashort high-power electromagnetic pulses induce ATP release in B16F10 murine melanoma cells. JEMAA 7(3), 66–74 (2015)

    Article  Google Scholar 

  201. Stamatovic, S.M., Keep, R.F., Andjelkovic, A.V.: Brain endothelial cell-cell junctions: how to “Open” the blood brain barrier. Curr. Neuropharmacol. 6, 179–192 (2008)

    Article  Google Scholar 

  202. Cheng, C.Y., Mruk, D.D.: The blood-testis barrier and its implications for male contraception. Pharmacol. Rev. 64(1), 16–64 (2012)

    Article  Google Scholar 

  203. Stam, R.: Electromagnetic fields and the blood–brain barrier. Brain Res. Rev. 65, 80–97 (2010)

    Article  Google Scholar 

  204. Ding, G.R., Li, K.C., Wang, X.W., Zhou, Y.C., Qiu, L.B., Tan, J., Xu, S.L., Guo, G.Z.: Effects of exposure to electromagnetic pulse on the permeability of brain micro vascular in rats. Biochem. Environ. Sci. 22(3), 255–258 (2009)

    Google Scholar 

  205. Ding, G.R., Qiu, L.B., Wang, X.W., Li, K.C., Zhou, Y.C., Zhou, Y., Zhang, J., Zhou, J.X., Li, Y.R., Guo, G.Z.: EMP-induced alterations of tight junction protein expression and disruption of the blood–brain barrier. Toxicol. Lett. 196, 154–160 (2010)

    Article  Google Scholar 

  206. Qiu, L.B., Ding, G.R., Li, K.C., Wang, X.W., Zhou, Y., Zhou, Y.C., Li, Y.R., Guo, G.Z.: The role of protein kinase C in the opening of blood-brain barrier induced by electromagnetic pulse. Toxicology 273(1–3), 29–34 (2010)

    Article  Google Scholar 

  207. Qiu, L.B., Chen, C., Ding, G., Zhou, Y., Zhang, M.: The effects of electromagnetic pulse on the protein levels of tight junction associated-proteins in the cerebral cortex, hippocampus, heart, lung, and testis of rats. Biomed. Environ. Sci. 24(4), 438–444 (2011)

    Google Scholar 

  208. Qiu, L.B., Zhou, Y., Wang, Q., Yang, L.L., Liu, H.Q., Xu, S.L., Qi, Y.H., Ding, G.R., Guo, G.Z.: Synthetic gelatinases inhibitor attenuates electromagnetic pulse-induced blood-brain barrier disruption by inhibiting gelatinases-mediated ZO-1 degradation in rats. Toxicology 285(1–2), 31–38 (2011)

    Article  Google Scholar 

  209. Zhou, J.X., Ding, G.R., Zhang, J., Zhou, Y.C., Zhang, Y.J., Guo, G.Z.: Detrimental effect of electromagnetic pulse exposure on permeability of in vitro blood-brain-barrier model. Biomed. Environ. Sci. 26(2), 128–137 (2013)

    Google Scholar 

  210. Wang, X.W., Ding, G.R., Shi, C.H., Zeng, L.H., Liu, J.Y., Li, J., Zhao, T., Chen, Y.B., Guo, G.Z.: Mechanisms involved in the blood-testis barrier increased permeability induced by EMP. Toxicology 276(1), 58–63 (2010)

    Article  Google Scholar 

  211. Wang, L.F., Li, X., Gao, Y.B., Wang, S.M., Zhao, L., Dong, J., Yao, B.W., Xu, X.P., Chang, G.M., Zhou, H.M., Hu, X.J., Peng, R.Y.: Activation of VEGF/Flk-1-ERK pathway induced blood-brain barrier injury after microwave exposure. Mol. Neurobiol. 52(1), 478–491 (2014)

    Article  Google Scholar 

  212. Ramundo-Orlando, A., Stano, P., Gallerano, G.P., Doria, A., Giovenale, E., Messina, G., D’Arienzo, M., Spassovsky, I.: Permeability changes of cationic liposomes loading carbonic anhydrase induced by 130 GHz pulsed radiation. Bioelectromagnetics 28(8), 587–671 (2007)

    Article  Google Scholar 

  213. Walde, P. Preparation of vesicles (liposomes). In: Nalwa HS, editor. Encyclopedia of Nanoscience and Nanotechnology. vol. X, pp. 1–37. American Scientific Publishers (2003)

    Google Scholar 

  214. Ramundo-Orlando, A., Morbiducci, U., Mossa, G., d’Inzeo, G.: Effect of low-frequency, low-amplitude magnetic fields on the permeability of cationic liposomes entrapping carbonic anhydrase. I. Evidence for charged lipid involvement. Bioelectromagnetics 21, 491–498 (2000)

    Article  Google Scholar 

  215. Cevc, G. editor. Solute transport across bilayers. In: Phospholipids Handbook, pp. 639–661. Marcel Dekker, New York (1993)

    Google Scholar 

  216. Pocker, Y., Stone, J.T.: The catalytic versatility of erythrocyte carbonic anhydrase. Kinetic studies of the enzyme-catalyzed hydrolysis of p-nitrophenyl acetate. Biochemistry 6, 668–678 (1967)

    Article  Google Scholar 

  217. Ramundo-Orlando, A., Mattia, F., Palombo, A., d’Inzeo, G.: Effect of low-frequency, low-amplitude magnetic fields on the permeability of cationic liposomes entrapping carbonic anhydrase. II. No evidence for surface enzyme involvement. Bioelectromagnetics 21, 499–507 (2000)

    Article  Google Scholar 

  218. Gallerano,G.P., Doria, A., Giovenale,E., Messina, G., Spassovsky, I., Ramundo-Orlando, A., Scarfì, M.R., Romeo,S., Zeni, O.: Electric vs. electromagnetic ultrashort pulses: Search for a unifying view, Millimeter and Terahertz Waves, Congress IRMMW-THz (2011)

    Google Scholar 

  219. Vernier, P.T., Levine, Z.A., Ho, M.C., Xiao, S., Semenov, I., Pakhomov, A.G.: Picosecond and Terahertz perturbation of interfacial water and electropermeabilization of biological membranes. J. Membr. Biol. 248(5), 837–847 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Lukes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Lukes, P. et al. (2017). Special Electromagnetic Agents: From Cold Plasma to Pulsed Electromagnetic Radiation. In: Akiyama, H., Heller, R. (eds) Bioelectrics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56095-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56095-1_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56093-7

  • Online ISBN: 978-4-431-56095-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics