Skip to main content

Pulsed Power Technology

  • Chapter
  • First Online:
Bioelectrics

Abstract

Pulsed power refers to the science and technology of accumulating energy over a relatively long period of time and releasing it as a high-power pulse composed of high voltage and current over a short period of time; as such, it has extremely high power but moderately low energy. Pulsed power is produced by transferring energy generally stored in capacitors and inductors to a load very quickly through switching devices. Applications of pulsed power continue expansion into fields including the environment, recycling, energy, defense, material processing, medical treatment, plasma medicine, and food and agriculture.

Building upon the development of pulsed power generators which offer both high repetition and performance, scientists are now able to investigate effects of pulsed power on living organisms, and their research has expanded to encompass a new field known as bioelectrics. Section 2.1 summarizes pulsed power technology with a focus on this new field. Section 2.2 summarizes the basics of electric circuits, while Sect. 2.3 discusses pulsed power generators utilized for bioelectrics. Section 2.4 describes switches as a key technology. Measurement tools of pulsed power are shown in Sect. 2.5, and delivery of electric pulses to biological tissues using antennas is described in Sect. 2.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paul, W.: Smith, Transient Electronics, Pulsed Circuit Technology. Wiley, Chichester (2002)

    Google Scholar 

  2. Humphries Jr., S.: Principles of Charged Particle Acceleration. Wiley, New York (1990)

    Google Scholar 

  3. Bluhm, H.: Pulsed Power Systems, Principle and Applications. Springer, Berlin (2006)

    Google Scholar 

  4. Mesyats, G.A.: Pulsed Power. Springer, New York (2005)

    Google Scholar 

  5. Akiyama, H. (ed.): IEEJ EEText, Kodenatsu Parusu Pawa Kougaku, Ohmsha, (in Japanese) (2003)

    Google Scholar 

  6. Choi, J.: Introduction of the magnetic pulse compressor (MPC) – fundamental review and practical application. J. Electr. Eng. Technol. 5(3), 484–492 (2010)

    Article  Google Scholar 

  7. Barrett, D.M.: Core reset considerations in magnetic pulse compression networks, Pulsed Power Conference, 1995. Digest of technical papers. Tenth IEEE International, vol. 2, no., pp.1160,1165 vol. 2, (3–6 July 1995) doi: 10.1109/PPC.1995.599771

  8. Deyu Wang, Weiyang Wu, Da Li, Liqiao Wang: Compact Magnetic Compression Repetitive Pulsed Power Generator Based on IGBT. Electrical Machines and Systems, 2008. ICEMS 2008. International Conference on, pp. 1255–1258, 17–20 Oct 2008

    Google Scholar 

  9. Mankowski, J., Kristiansen, M.: A review of short pulse generator technology. IEEE Trans. Plasma Sci. 2(1), 102–108 (2000)

    Article  Google Scholar 

  10. Lyubutin, S.K., Mesyats, G.A., Rukin, S.N., Slovikovskii, B.G., Turov, A.M.: New solid state opening switches for repetitive pulsed power technology, High-Power Particle Beams, 1996 11th International Conference on, vol. 1, no., pp.135,138 (10–14 June 1996)

    Google Scholar 

  11. Redondo, L., Silva, F.A.: Solid state pulsed power electronics. In: Rashid, M. et al. (eds.) Power Electronics Handbook 3rd edn. Butterworth-Hinemann Publishing, Elsevier, USA,  ISBN # 9780123820365, chapter 26, pp 669–710 (2010)

    Google Scholar 

  12. Kesar, A.S., Merensky, L.M., Ogranovich, M., Kardo-Sysoev, A.F., Shmilovitz, D.: 6-kV, 130-ps rise-time pulsed-power circuit featuring cascaded compression by fast recovery and avalanche diodes. Electron. Lett. 49(24), 1539–1540 (2013)

    Article  Google Scholar 

  13. Mohan, N., Undeland, T., Robbins, W.: Power Electronics: Converters, Applications and Design, 2nd edn. Wiley, New York (1995)

    Google Scholar 

  14. Rashid, M.H. (ed.): Power Electronics Handbook, 2nd edn. Academic, Elsevier, San Diego (2007). ISBN 10:0-12-088479-8. ISBN 13:978-0-12-088479-7

    Google Scholar 

  15. Baker, R.J., Johnson, B.P.: Applying the Marx Bank circuit configuration to power mosfets. Electron. Lett. 29(1), 56–57 (1993)

    Article  Google Scholar 

  16. Baker, R.J., Ward, S.T.: Designing nanosecond high voltage pulse generators using power MOSFETs. Electron. Lett. 30(20), 1634–1635 (1994)

    Article  Google Scholar 

  17. Welleman, A., Waldmeyer, J., Ramezani, E.: Solid state switches for pulse power modulators. In: Proc. Linear Particle Accelerator Conf., pp. 707–709 (2002)

    Google Scholar 

  18. Jiang, W., et al.: Compact solid-state switched pulsed power and its applications. Proc. IEEE 92(7), 1180–1196 (2004)

    Article  Google Scholar 

  19. Mazumder, S.K., Sarkar, T.: SiC based optically-gated high-power solid-state switch for pulsed-power application. Mater. Sci. Forum 600–603, 1195–1198 (2008)

    Google Scholar 

  20. Racz, B., Patocs, A.: Fast high-voltage resistive pulse divider. Meas. Sci. Technol. 3, 926 (1992)

    Article  Google Scholar 

  21. www.highvoltageprobes.com (as of 30 Dec 2014)

  22. Winands, G.J.J.: Efficient Streamer Plasma Generation. PhD Thesis Eindhoven University of Technology (2007)

    Google Scholar 

  23. van Deursen, A.P.J., Gulickx, P.F.M., van der Laan, P.C.T.: A Current and Voltage Sensor in One Unit. 8th International Symposium on High Voltage Engineering, Yokohama (1993)

    Google Scholar 

  24. van Deursen, A.P.J., Smulders, H.W.M., de Graaff, R.A.A.: Differentiating/integrating measurement setup applied to railway environment. IEEE Trans. Instrum. Meas. 55, 316–326 (2006)

    Article  Google Scholar 

  25. van Heesch, E.J.M., van Deursen, A.P.J., van Houten, M.A., Jacobs, G.A.P., Kersten, W.F.J., van der Laan, P.C.T.: Field Tests and Response of the D/I H.V. Measuring System. Sixth International Symposium on High Voltage Engineering, New Orleans (1989)

    Google Scholar 

  26. van Heesch, E.J.M., van Rooij, J.N.A.M., Noij, R.G., van der Laan, P.C.T.: A new current and voltage measuring system; tests in a 150 kV and 400 kV GIS. Proc. 5th Int. Symp. High Voltage Eng. 3, 73.06 (1987)

    Google Scholar 

  27. van Houten, M.A.: Electromagnetic Compatibility in High-Voltage Engineering. PhD thesis, Eindhoven University of Technology (1990)

    Google Scholar 

  28. Keller, R.: Wideband high voltage probe. Rev. Sci. Instrum. 35, 1057–1059 (1964)

    Article  Google Scholar 

  29. Smulders, H.W.M., de Graaff, R.A.A., Janssen, M.F.P., van Alphen, G.: Measurement systems for AC traction power supply systems. Int. Conf. Railw. Traction Syst. Capri Proc. 2, 139–159 (2001)

    Google Scholar 

  30. Huiskamp, T., Beckers, F.J.C.M., van Heesch, E.J.M., Pemen, A.J.M.: First implementation of a subnanosecond rise time, variable pulse duration, variable amplitude, repetitive, high-voltage pulse source. IEEE Trans. Plasma Sci. 42(3), 859–867 (2014)

    Article  Google Scholar 

  31. Huiskamp, T., Voeten, S.J., van Heesch, E.J.M., Pemen, A.J.M.: Design of a subnanosecond rise time, variable pulse duration, variable amplitude, repetitive, high-voltage pulse source. IEEE Trans. Plasma Sci. 42(1), 127–137 (2014)

    Article  Google Scholar 

  32. Lorusso, A., Nassisi, V., Siciliano, M.: Fast capacitive probe for electromagnetic pulse diagnostic. Rev. Sci. Instrum. 79(6), 064702 (2008)

    Article  Google Scholar 

  33. Voeten, S.J.: Matching High Voltage Pulsed Power Technologies. Ph.D. dissertation, Dept. Electr. Eng., Eindhoven Univ. Technol., Eindhoven (2013)

    Google Scholar 

  34. Smith, P.: Transient Electronics: Pulsed Circuit Technology. Wiley, New York (2002)

    Google Scholar 

  35. Huiskamp, T., van Heesch, E.J.M., Pemen, A.J.M.: Final Implementation of a Subnanosecond Rise Time, Variable Pulse Duration, Variable Amplitude, Repetitive, High-Voltage Pulse Source. Accepted for IEEE Trans. Plasma Sci., on line 8 Dec 2014

    Google Scholar 

  36. http://www.pearsonelectronics.com (as of 30 Dec 2014)

  37. Rogowski, W., Steinhaus, W.: Die Messung der magnetischen Spannung. Arch. Elektrotechnik 1(Pt.4), 141–150 (1912)

    Article  Google Scholar 

  38. van Bree, J.W.M., Geysen, J.J.G., van Heesch, E.J.M., Pemen, A.J.M.: Novel nanosecond pulsed electric field device for noncontact treatment of cells in native culture conditions. IEEE Trans. Plasma Sci. 41(10), 2654–2658 (2013)

    Article  Google Scholar 

  39. Zhen, L.: Multiple-Switch Pulsed Power Generation Based on a Transmission Line Transformer. PhD Thesis Eindhoven University of Technology (2008)

    Google Scholar 

  40. Smulders, H.W.M., van Heesch, E.J.M., van Paassen, S.V.B.: Pulsed power corona discharges for air pollution control. IEEE Trans. Plasma Sci. 26, 1476–1484 (1998)

    Article  Google Scholar 

  41. Schoenbach, K.H., Xiao, S., Joshi, R.P., Camp, J.T., Heeren, T., Kolb, J.F., Beebe, S.J.: The effect of intense subnanosecond electrical pulses on biological cells. IEEE Trans. Plasma Sci. 36, 414–422 (2008)

    Article  Google Scholar 

  42. Rogers, W.R., Merritt, J.H., Comeaux Jr., J.A., Kuhnel, C.T., Moreland, D.F., Teltschik, D.G., Lucas, J.H., Murphy, M.R.: Strength duration curve for an electrically excitable tissue extended down to near 1 nanosecond. IEEE Trans. Plasma Sci. 32, 1587–1599 (2004)

    Article  Google Scholar 

  43. Jiang, N., Cooper, B.Y.: Frequency-dependent interaction of ultrashort E-fields with nociceptor membranes and proteins. Bioelectromagnetics 32, 148–163 (2011)

    Article  Google Scholar 

  44. Xiao, S., Guo, S., Nesin, V., Heller, R., Schoenbach, K.H.: Subnanosecond electric pulses cause membrane permeabilization and cell death. IEEE Trans. Plasma Sci. 58, 1239–1245 (2011)

    Google Scholar 

  45. Camp, J.T., Jing, Y., Zhuang, J., Kolb, J.F., Beebe, S.J., Song, J., Joshi, R.P., Xiao, S., Schoenbach, K.H.: Cell death induced by subnanosecond pulsed electric fields at elevated temperatures. IEEE Trans. Plasma Sci. 40(10), 2334–2347 (2012)

    Article  Google Scholar 

  46. Baum, C.E.: Focal waveform of a prolate-spheroidal impulseradiating antenna (IRA). Radio Sci. 42, RS6S27 (2007)

    Article  Google Scholar 

  47. Trefna, H.D., Vrba, J., Persson, M.: Time-reversal focusing in microwave hyperthermia for deep-seated tumors. Phys. Med. Biol. 55, 2167–2185 (2010)

    Article  Google Scholar 

  48. Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., Felix, R., Schlag, P.M.: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3(8), 487–497 (2002)

    Article  Google Scholar 

  49. Converse, M., Bond, J.E., Veen, B.D., Hagness, S.C.: A computational study of ultra-wideband versus narrowband microwave hyperthermia for breast cancer treatment. IEEE Trans. Microwave Theory Tech. 54(5), 2169–2180 (2006)

    Article  Google Scholar 

  50. Yarovoy, A.G., Ligthart, L.P., Matuzas, J., Levitas, B.: UWB radar for human being detection. IEEE Aerosp. Electron. Syst. Mag. 21, 22–26 (2006)

    Article  Google Scholar 

  51. Miller, E.K.: Chapter 5: Time-Domain Measurements in Electromagnetics, pp. 122. Van Nostrand Reinhold Company Inc., New York (1986)

    Google Scholar 

  52. Allen, B., Dohler, M., Okon, E.E., Malik. W.Q., Brown, A.K., Edwards, D.J.: Chapter 7: Ultra-Wideband Antennas and Propagation for Communications, Radar and Imaging. Wiley, Chichester (2007)

    Google Scholar 

  53. Wiesbeck, W., Adamiuk, G., Sturm, C.: Basic properties and design principles of UWB antennas. Proc. IEEE 97(2), 372–385 (2009)

    Article  Google Scholar 

  54. Smith, G.S.: Teaching antenna radiation from a time-domain perspective. Am. J. Phys. 69(3), 288 (2001)

    Article  Google Scholar 

  55. Baum, C.E.: Focused Aperture Antennas. Sensor and Simulation Notes 306, (1987)

    Google Scholar 

  56. Grimnes, S., Martinsen, O.G.: Bioimpedance and Bioelectricity Basics. Academic Press, London (2000)

    Google Scholar 

  57. Barnes, F.S., Greenebaum, B.: Handbook of Biological Effects of Electromagnetic Fields. Introduction by C. Polk. CRC press, Boca Raton (2006)

    Google Scholar 

  58. Kumar, P., Baum, C.E., Altunc, S., Buchenauer, J., Xiao, S., Christodoulou, C.G., Schamiloglu, E., Schoenbach, K.H.: A hyperband antenna to launch and focus fast high-voltage pulses onto biological targets. IEEE Trans. Microwave Theory Tech. 59, 1090–1101 (2011)

    Article  Google Scholar 

  59. Xiao, S., Altunc, S., Kumar, P., Baum, C.E., Schoenbach, K.H.: A reflector antenna for focusing in the near field. IEEE Antennas Wirel. Propag. Lett. 9, 12–15 (2010)

    Article  Google Scholar 

  60. Bajracharya, C., Xiao, S., Baum, C.E., Schoenbach, K.H.: Target detection with impulse radiating antenna. IEEE Antennas Wirel. Propag. Lett. 10, 496–499 (2011)

    Article  Google Scholar 

  61. Ishizawa, H., Tanabe, T., Yoshida, D., Hosseini, S.H.R., Katsuki, S., Akiyama, H.: Focusing system of burst electromagnetic waves for medical applications. IEEE Trans. Dielectr. Electr. Insul. 20(4), 1321–1326 (2013)

    Article  Google Scholar 

  62. Guo, F., Yao, C., Bajracharya, C., Polisetty, S., Schoenbach, K.H., Xiao, S.: Simulation of delivery of subnanosecond pulses to biological tissues with impulse radiating antenna. Bioelectromagnetics 35, 145–159 (2013)

    Article  Google Scholar 

  63. Xiao, S., Guo, F., Li, J., Hou, G.. Schoenbach, K.H.: Simulation of delivery of subnanosecond electric pulses into biological tissues. In: Proceedings of the 2012 IEEE International Power Modulator and High Voltage Conference, San Diego (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Akiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Akiyama, H. et al. (2017). Pulsed Power Technology. In: Akiyama, H., Heller, R. (eds) Bioelectrics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56095-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56095-1_2

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56093-7

  • Online ISBN: 978-4-431-56095-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics