Skip to main content

Gel-Solvent Friction

  • Chapter
  • First Online:
Rheology of Biological Soft Matter

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 1471 Accesses

Abstract

The science of gel draws much attention after the discovery of the volume phase transition of gel. Among others, the information on the dynamics of gel is of importance to understand the kinetic behaviors of the volume phase transition of the gel. It is well established that the dynamics of gel is governed mainly by the collective diffusion of the polymer network of gel and the collective diffusion itself is determined by the balance between two forces. One is the elastic force due to the deformation of three-dimensional polymer network of gel, and the other is the frictional drag force between the polymer network of gel and the gel fluid. In early stage of the study in gels, the elastic properties of gel attract much attention, and, hence, considerable effort has been devoted to clarify the elastic behaviors of gel. The elastic properties of various gels under various experimental conditions are gained and reported so far. In contrast, much attention has not been paid to the frictional properties of gel since the experimental method in obtaining the reliable values of the friction coefficient has not been established until recently. The systematic studies on the frictional properties of gel begun only recently. Here, we would like to overview the earlier studies on the frictional property of gels including why the frictional study of gel is difficult and how we can solve the difficulty to obtain the reliable values of the friction coefficient of gel. The recent advancement on the frictional study of colloid gel will also be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We do not cite the reports of the rheological studies on the gel and gelling processes here because there are actually so many studies to be cited. Readers who are interested in the rheological studies of gels, please refer to well-known books of rheology such as Viscoelastic Properties of Polymers written by J. D. Ferry. Many references, including the experimental method of rheology, are cited therein.

  2. 2.

    See the definition of the friction coefficient, Eq. (3.4). The friction we will discuss here is a property that is defined to a system that consists of the porous solid and the fluid.

  3. 3.

    Equation (3.4) is sometime called as Darcy’s law. So far, the equation is applied to the studies of the fluid flow in the porous hard materials such as the fluid flow in the sintered glass filters and the subterranean water flow in the soil.

  4. 4.

    The result of the elution time course from gel can be fitted to the theoretical one. We find that the results are in good agreement with the independent elasticity measurement.

  5. 5.

    In these measurements the thickness of the sample gels are about 5–7 mm or more.

  6. 6.

    In the case of present confocal laser scanning microscope, δ ≃ 1 μm when the objective lens with the magnification of 100× and N.A. = 1. 4 is employed. The area σ 0 depends on the setting of the image analysis software. The one side of the image is usually fixed from 20 to 30 μm.

References

  1. T. Tanaka, L. O. Hocker, and G. B. Benedek, J. Chem. Phys., 59, 5151 (1973).

    Article  CAS  Google Scholar 

  2. T. Tanaka, Phys. Rev. Lett., 40, 820 (1978).

    Article  CAS  Google Scholar 

  3. T. Tanaka, D. J. Fillmore, S. -T. Sun, I. Nishio, G. Swislow, and A. Shah, Phys. Rev. Lett., 45, 1636 (1980).

    Article  CAS  Google Scholar 

  4. T. Tanaka and D. J. Fillmore, J. Chem. Phys., 70, 1214 (1979).

    Article  CAS  Google Scholar 

  5. T. Tanaka, S. Ishiwata, and C. Ishimoto, Phys. Rev. Lett., 38, 771 (1977).

    Article  CAS  Google Scholar 

  6. J. P. Munch, S. Candau, J. Herz, and G. Hild, J. Phys. (Paris) 38, 971 (1977).

    Article  CAS  Google Scholar 

  7. J. P. Munch, P. Lemarechal, and S. Candau, J. Phys. (Paris) 38, 1499 (1977).

    Article  CAS  Google Scholar 

  8. T. Takebe, K. Nawa, S. Suehiro and T. Hashimoto, J. Chem. Phys., 59, 4360 (1989).

    Article  Google Scholar 

  9. P. G. de Gennes, Scaling Concepts in Polymer Physics, (Cornell University Press, Ithaca, 1979).

    Google Scholar 

  10. N. Weiss and A. Silberberg, Polym. Prepr. Am. Chem. Soc., Div. Polym. Chem., 16, 289 (1979).

    Google Scholar 

  11. N. Weiss, T. van Vilet, and A. Silberberg, J. Polym. Sci. Polym. Phys. Eds., 17, 2229 (1979).

    Article  CAS  Google Scholar 

  12. A. M. Hecht and E. Geissler, J. Chem. Phys., 73, 4077 (1980).

    Article  CAS  Google Scholar 

  13. E. Geissler and A. M. Hecht, J. Chem. Phys., 77, 1548 (1982).

    Article  CAS  Google Scholar 

  14. M. Tokita and T. Tanaka, J. Chem. Phys., 95, 4613 (1991).

    Article  CAS  Google Scholar 

  15. Y. Hirokawa and T. Tanaka, J. Chem. Phys., 81, 6379 (1984).

    Article  Google Scholar 

  16. Y. Y. Suzuki, M. Tokita, and S. Mukai, Euro. Phys. J. E, 29, 415 (2009).

    Google Scholar 

  17. M. Tokita and T. Tanaka, Science, 253, 1121 (1991).

    Article  CAS  Google Scholar 

  18. E. G. Richards and C. J. Temple, Nature (Phys. Sci.), 230, 92 (1971).

    Google Scholar 

  19. M. Tokita, Polymers, 6, 651 (2014).

    Article  Google Scholar 

  20. Y. Doi and M. Tokita, Langmuir, 21, 5285 (2005).

    Article  CAS  Google Scholar 

  21. S. Mukai, H. Miki, V. Garamus, R. Willmeit, and M. Tokiya, Progre. Colloid Polymer Sci., 136, 95 (2009).

    CAS  Google Scholar 

  22. Y. Doi and M. Tokita, Langmuir, 21, 9420 (2005).

    Article  CAS  Google Scholar 

  23. E. S. Matsuo and T. Tanaka, Nature, 358, 482 (1992).

    Article  CAS  Google Scholar 

  24. J. Maskawa, T. Takeuchi, K. Maki, K. Tsujii, and T. Tanaka, J. Chem. Phys., 110, 10993 (1999).

    Article  CAS  Google Scholar 

  25. M. Tokita, S. Suzuki, K. Miyamoto, and T. Komai, J. Phys. Soc. Jpn., 68, 330 (1999).

    Article  CAS  Google Scholar 

  26. M. Tokita, K. Miyamoto, and T. Komai, J. Chem. Phys., 113, 1647 (2000).

    Article  CAS  Google Scholar 

  27. K. Nakamura, E. Shinoda, and M. Tokita, Food Hydrocolloids, 15, 247 (2001).

    Article  CAS  Google Scholar 

  28. M. Tokita, Adv. Polym. Sci., 110, 27 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Tokita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Tokita, M. (2017). Gel-Solvent Friction. In: Kaneda, I. (eds) Rheology of Biological Soft Matter. Soft and Biological Matter. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56080-7_3

Download citation

Publish with us

Policies and ethics