Skip to main content

Bridging the Gap Between Single-Molecule Unbinding Properties and Macromolecular Rheology

  • Chapter
  • First Online:
Rheology of Biological Soft Matter

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

Conformation and interactions between biological macromolecules are crucial for the mechanical properties of biological soft matter. In this chapter, the method and applications of the mechanical characteristics at the single-molecule level, from a fundamental point of view, are described as basis for understanding aspects of rheology. Atomic force microscope (AFM) and optical tweezers can be applied to investigate mechanical properties and interactions of molecules in the single molecular level. The force between two molecules as a result of specific and/or non-specific interactions can be determined as a function of distance between two molecules. Selected examples for interactions in macromolecules were highlighted based on observations by AFM-based force spectroscopy. This includes polysaccharide pairs such as interactions among hydrophobically modified hydroxyethyl cellulose (HMHEC), between protein polysaccharides and mucin–alginate. The mechanism of physically cross-linked hydrogel formation, HMHEC–amylose gel and alginate gels was also discussed based on single molecular pair interactions. For slower bond formation systems, which may not be capable with normal dynamic force spectroscopy, slide contact force spectroscopy can be applied. For slower dissociation rate, Dudko–Hummer–Szabo model and Friddle–Noy–De Yoreo model can be used for the analysis as an extension of the Bell–Evans model. The relation between characteristic timescale of interaction estimated in the single molecular study and relaxation spectra in the mechanical properties obtained at the macroscopic scale is presented as a possible way forward in understanding the gap between the mechanical properties in macroscopic and microscopic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gennes, P., Scaling Concepts in Polymer Physics. 1979: Cornell University Press

    Google Scholar 

  2. Eaton, P. and P. West, Atomic Force Microscopy. 2010: Oxford University Press

    Google Scholar 

  3. Janshoff, A., et al., Force spectroscopy of molecular systems – Single molecule spectroscopy of polymers and biomolecules. Angewandte Chemie-International Edition, 2000. 39(18): p. 3213–3237

    Google Scholar 

  4. Sarid, D. and V. Elings, Review of Scanning Force Microscopy. Journal of Vacuum Science & Technology B, 1991. 9(2): p. 431–437

    Article  CAS  Google Scholar 

  5. Giannotti, M.I. and G.J. Vancso, Interrogation of single synthetic polymer chains and polysaccharides by AFM-based force spectroscopy. Chemphyschem, 2007. 8(16): p. 2290–2307

    Article  CAS  Google Scholar 

  6. Ashkin, A., Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters, 1970. 24(4): p. 156–159

    Google Scholar 

  7. Ashkin, A., et al., Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Optics Letters, 1986. 11(5): p. 288–290

    Article  CAS  Google Scholar 

  8. Moffitt, J.R., et al., Recent advances in optical tweezers. Annual Review of Biochemistry, 2008. 77: p. 205–228

    Article  CAS  Google Scholar 

  9. Williams, M.C., Optical Tweezers: Measuring Piconewton Forces, in Single Molecule Techniques, P. Schwille, Editor. 2002, Biophysical Society

    Google Scholar 

  10. Grandbois, M., et al., How strong is a covalent bond? Science, 1999. 283(5408): p. 1727–1730.

    Article  CAS  Google Scholar 

  11. Lee, G.U., L.A. Chrisey, and R.J. Colton, Direct Measurement of the Forces between Complementary Strands of DNA. Science, 1994. 266(5186): p. 771–773.

    Article  CAS  Google Scholar 

  12. Ortiz, C. and G. Hadziioannou, Entropic elasticity of single polymer chains of poly(methacrylic acid) measured by atomic force microscopy. Macromolecules, 1999. 32(3): p. 780–787

    Article  CAS  Google Scholar 

  13. Marszalek, P.E., et al., Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring. Nature, 1998. 396(6712): p. 661–664.

    Article  CAS  Google Scholar 

  14. Noy, A. and R.W. Friddle, Practical single molecule force spectroscopy: How to determine fundamental thermodynamic parameters of intermolecular bonds with an atomic force microscope. Methods, 2013. 60(2): p. 142–150.

    Article  CAS  Google Scholar 

  15. Kienberger, F., et al., Molecular recognition imaging and force spectroscopy of single biomolecules. Accounts of Chemical Research, 2006. 39(1): p. 29–36.

    Article  CAS  Google Scholar 

  16. Rackham, B.D., et al., Non-covalent duplex to duplex crosslinking of DNA in solution revealed by single molecule force spectroscopy. Organic & Biomolecular Chemistry, 2013. 11(48): p. 8340–8347

    Article  CAS  Google Scholar 

  17. Morris, S., S. Hanna, and M.J. Miles, The self-assembly of plant cell wall components by single-molecule force spectroscopy and Monte Carlo modelling. Nanotechnology, 2004. 15(9): p. 1296–1301

    Article  CAS  Google Scholar 

  18. Hugel, T., et al., Elasticity of single polyelectrolyte chains and their desorption from solid supports studied by AFM based single molecule force spectroscopy. Macromolecules, 2001. 34: p. 1039–1047

    Article  CAS  Google Scholar 

  19. Friedsam, C., H.E. Gaub, and R.R. Netz, Probing surfaces with single-polymer atomic force microscope experiments. Biointerphases, 2006. 1(1): p. MR1-MR21

    Article  CAS  Google Scholar 

  20. Takemasa, M., M. Sletmoen, and B.T. Stokke, Single Molecular Pair Interactions between Hydrophobically Modified Hydroxyethyl Cellulose and Amylose Determined by Dynamic Force Spectroscopy. Langmuir, 2009. 25(17): p. 10174–10182.

    Article  CAS  Google Scholar 

  21. Egermayer, M., M. Karlberg, and L. Piculell, Gels of hydrophobically modified ethyl (hydroxyethyl) cellulose cross-linked by amylose: Effects of hydrophobe architecture. Langmuir, 2004. 20(6): p. 2208–2214.

    Article  CAS  Google Scholar 

  22. Chronakis, I.S., M. Egermayer, and L. Piculell, Thermoreversible gels of hydrophobically modified hydroxyethyl cellulose cross-linked by amylose. Macromolecules, 2002. 35(10): p. 4113–4122

    Article  CAS  Google Scholar 

  23. Bell, G.I., Models for Specific Adhesion of Cells to Cells. Science, 1978. 200(4342): p. 618–627.

    Article  CAS  Google Scholar 

  24. Evans, E. and K. Ritchie, Strength of a weak bond connecting flexible polymer chains. Biophysical Journal, 1999. 76(5): p. 2439–2447

    Article  CAS  Google Scholar 

  25. Friedsam, C., M. Seitz, and H.E. Gaub, Investigation of polyelectrolyte desorption by single molecule force spectroscopy. Journal of Physics-Condensed Matter, 2004. 16(26): p. S2369-S2382

    Article  CAS  Google Scholar 

  26. Evans, E. and K. Ritchie, Dynamic strength of molecular adhesion bonds. Biophysical Journal, 1997. 72(4): p. 1541–1555

    Article  CAS  Google Scholar 

  27. Karlson, L., K. Thuresson, and B. Lindman, A rheological investigation of the complex formation between hydrophobically modified ethyl (hydroxy ethyl) cellulose and cyclodextrin. Carbohydrate Polymers, 2002. 50(3): p. 219–226.

    Article  CAS  Google Scholar 

  28. Hane, F.T., S.J. Attwood, and Z. Leonenko, Comparison of three competing dynamic force spectroscopy models to study binding forces of amyloid-beta (1–42). Soft Matter, 2014. 10(12): p. 1924–1930

    Article  CAS  Google Scholar 

  29. Dudko, O.K., G. Hummer, and A. Szabo, Intrinsic rates and activation free energies from single-molecule pulling experiments. Physical Review Letters, 2006. 96(10): 108101.

    Google Scholar 

  30. Friddle, R.W., A. Noy, and J.J. De Yoreo, Interpreting the widespread nonlinear force spectra of intermolecular bonds. Proc. Natl. Acad. Sci. U. S. A., 2012. 109(34): p. 13573–13578.

    Google Scholar 

  31. Harada, A. and M. Kamachi, Complex-Formation between Poly(Ethylene Glycol) and Alpha-Cyclodextrin. Macromolecules, 1990. 23(10): p. 2821–2823.

    Article  CAS  Google Scholar 

  32. Wanunu, M., Nanopores: A journey towards DNA sequencing. Physics of Life Reviews, 2012. 9(2): p. 125–158

    Article  Google Scholar 

  33. Laszlo, A.H., et al., Decoding long nanopore sequencing reads of natural DNA. Nature Biotechnology, 2014. 32(8): p. 829–833.

    Article  CAS  Google Scholar 

  34. Baaken, G., et al., High-Resolution Size-Discrimination of Single Nonionic Synthetic Polymers with a Highly Charged Biological Nanopore. Acs Nano, 2015. 9(6): p. 6443–6449

    Article  CAS  Google Scholar 

  35. Wenz, G., B.H. Han, and A. Muller, Cyclodextrin rotaxanes and polyrotaxanes. Chemical Reviews, 2006. 106(3): p. 782–817.

    Article  CAS  Google Scholar 

  36. Dunlop, A., et al., Mapping the positions of beads on a string: dethreading rotaxanes by molecular force spectroscopy. Nanotechnology, 2008. 19(34): 345706

    Google Scholar 

  37. Ashcroft, B.A., et al., An AFM/rotaxane molecular reading head for sequence-dependent DNA structures. Small, 2008. 4(9): p. 1468–1475

    Article  CAS  Google Scholar 

  38. Shigekawa, H., et al., The molecular abacus: STM manipulation of cyclodextrin necklace. Journal of the American Chemical Society, 2000. 122(22): p. 5411–5412

    Article  CAS  Google Scholar 

  39. Brough, B., et al., Evaluation of synthetic linear motor-molecule actuation energetics. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(23): p. 8583–8588

    Article  CAS  Google Scholar 

  40. Lussis, P., et al., A single synthetic small molecule that generates force against a load. Nature Nanotechnology, 2011. 6(9): p. 553–557

    Article  CAS  Google Scholar 

  41. Voulgarakis, N.K., et al., Sequencing DNA by dynamic force spectroscopy: Limitations and prospects. Nano Letters, 2006. 6(7): p. 1483–1486

    Article  CAS  Google Scholar 

  42. Qamar, S., P.M. Williams, and S.M. Lindsay, Can an atomic force microscope sequence DNA using a nanopore? Biophysical Journal, 2008. 94(4): p. 1233–1240.

    Article  CAS  Google Scholar 

  43. Larobina, D. and L. Cipelletti, Hierarchical cross-linking in physical alginate gels: a rheological and dynamic light scattering investigation. Soft Matter, 2013. 9(42): p. 10005–10015

    Article  CAS  Google Scholar 

  44. Siviello, C., F. Greco, and D. Larobina, Analysis of linear viscoelastic behaviour of alginate gels: effects of inner relaxation, water diffusion, and syneresis. Soft Matter, 2015. 11(30): p. 6045–6054.

    Article  CAS  Google Scholar 

  45. Mansel, B.W., et al., Zooming in: Structural Investigations of Rheologically Characterized Hydrogen-Bonded Low-Methoxyl Pectin Networks. Biomacromolecules, 2015. 16: p. 3209–3216.

    Article  CAS  Google Scholar 

  46. Stokke, B.T., et al., Distribution of Uronate Residues in Alginate Chains in Relation to Alginate Gelling Properties. Macromolecules, 1991. 24(16): p. 4637–4645

    Article  CAS  Google Scholar 

  47. Round, A.N., et al, in Preparation

    Google Scholar 

  48. S. Ballance et al., Preparation of high purity monodisperse oligosaccharides derived from mannuronan by size-exclusion chromatography followed by semi-preparative high-performance anion-exchange chromatography with pulsed amperometric detection. Carbohydrate Research 2009, 344(2), p.~255–259.

    Google Scholar 

  49. Rico, P., et al., High-Speed Force Spectroscopy Unfolds Titin at the Velocity of Molecular Dynamics Simulations. Science, 2013. 342(6159): p. 741–743.

    Google Scholar 

  50. Suresh, S.J. and V.M. Naik, Hydrogen bond thermodynamic properties of water from dielectric constant data. Journal of Chemical Physics, 2000. 113(21): p. 9727–9732.

    Article  CAS  Google Scholar 

  51. Hakem, I.F., et al., Temperature, pressure, and isotope effects on the structure and properties of liquid water: A lattice approach. Journal of Chemical Physics, 2007. 127(22): p.~224106.

    Google Scholar 

  52. Borgogna, M., et al., On the Initial Binding of Alginate by Calcium Ions. The Tilted Egg-Box Hypothesis. Journal of Physical Chemistry B, 2013. 117(24): p. 7277–7282

    Article  CAS  Google Scholar 

  53. Borukhov, I., et al., Elastically driven linker aggregation between two semiflexible polyelectrolytes. Physical Review Letters, 2001. 86(10): p. 2182–2185

    Article  CAS  Google Scholar 

  54. Corfield, A.P., Mucins: A biologically relevant glycan barrier in mucosal protection. Biochimica Et Biophysica Acta-General Subjects, 2015. 1850(1): p. 236–252

    Article  CAS  Google Scholar 

  55. Hang, H.C. and C.R. Bertozzi, The chemistry and biology of mucin-type O-linked glycosylation. Bioorganic & Medicinal Chemistry, 2005. 13(17): p. 5021–5034

    Article  CAS  Google Scholar 

  56. Liu, Z.H., et al., Polysaccharides-based nanoparticles as drug delivery systems. Advanced Drug Delivery Reviews, 2008. 60(15): p. 1650–1662

    Article  CAS  Google Scholar 

  57. Lai, S.K., Y.Y. Wang, and J. Hanes, Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Advanced Drug Delivery Reviews, 2009. 61(2): p. 158–171

    Article  CAS  Google Scholar 

  58. Fuongfuchat, A., et al., Rheological studies of the interaction of mucins with alginate and polyacrylate. Carbohydrate Research, 1996. 284(1): p. 85–99

    Article  CAS  Google Scholar 

  59. Haugstad, K.E., et al., Direct Determination of Chitosan-Mucin Interactions Using a Single-Molecule Strategy: Comparison to Alginate-Mucin Interactions. Polymers, 2015. 7(2): p. 161–185

    Article  Google Scholar 

  60. Menchicchi, B., et al., Biophysical Analysis of the Molecular Interactions between Polysaccharides and Mucin. Biomacromolecules, 2015. 16(3): p. 924–935

    Article  CAS  Google Scholar 

  61. Taylor, C., et al., Rheological characterisation of mixed gels of mucin and alginate. Carbohydrate Polymers, 2005. 59(2): p. 189–195

    Article  CAS  Google Scholar 

  62. Nordgard, C.T. and K.I. Draget, Oligosaccharides As Modulators of Rheology in Complex Mucous Systems. Biomacromolecules, 2011. 12(8): p. 3084–3090.

    Article  Google Scholar 

  63. Sletmoen, M., et al., Oligoguluronate induced competitive displacement of mucin-alginate interactions: relevance for mucolytic function. Soft Matter, 2012. 8(32): p. 8413–8421

    Article  CAS  Google Scholar 

  64. Popeski-Dimovski, R., Work of adhesion between mucin macromolecule and calcium-alginate gels on molecular level. Carbohydrate Polymers, 2015. 123: p. 146–149

    Article  CAS  Google Scholar 

  65. Bucior, I. and M.M. Burger, Carbohydrate-carbohydrate interactions in cell recognition. Current Opinion in Structural Biology, 2004. 14(5): p. 631–637

    Article  CAS  Google Scholar 

  66. Haugstad, K.E., et al., Enhanced Self-Association of Mucins Possessing the T and Tn Carbohydrate Cancer Antigens at the Single-Molecule Level. Biomacromolecules, 2012. 13(5): p. 1400–1409.

    Article  CAS  Google Scholar 

  67. Haugstad, K.E., et al., Single molecule study of heterotypic interactions between mucins possessing the Tn cancer antigen. Glycobiology, 2015. 25(5): p. 524–534.

    Article  CAS  Google Scholar 

  68. Taylor, C., et al., The gel matrix of gastric mucus is maintained by a complex interplay of transient and nontransient associations. Biomacromolecules, 2003. 4(4): p. 922–927

    Article  CAS  Google Scholar 

  69. Spruijt, E., M.A.C. Stuart, and J. van der Gucht, Linear Viscoelasticity of Polyelectrolyte Complex Coacervates. Macromolecules, 2013. 46(4): p. 1633–1641

    Article  CAS  Google Scholar 

  70. Thünemann, A.F., et al., Polyelectrolyte complexes. Adv. Polym. Sci., 2004. 166: p. 113–171

    Article  Google Scholar 

  71. Bucur, C.B., Z. Sui, and J.B. Schlenoff, Ideal mixing in polyelectrolyte complexes and multilayers: Entropy driven assembly. Journal of the American Chemical Society, 2006. 128(42): p. 13690–13691

    Article  CAS  Google Scholar 

  72. Arents, G. and E.N. Moudrianakis, Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA. Proceedings of the National Academy of Sciences, 1993. 90(22): p. 10489–10493

    Article  CAS  Google Scholar 

  73. Schiessel, H., The physics of chromatin. J. Phys. Condens. Matter, 2003. 15: p. R699–R774

    Article  CAS  Google Scholar 

  74. Mangenot, S., et al., Salt-induced conformation and interaction changes of nucleosome core particles. Biophysics Journal, 2002. 82: p. 345–356

    Article  CAS  Google Scholar 

  75. Mangenot, S., et al., Interactions between isolated nucleosome core particles. Eur. Phys. J. E, 2002. 7: p. 221–231

    Google Scholar 

  76. Bertin, A., et al., Role of histone tails in the conformation and interactions of nucleosome core particles. Biochemistry, 2004. 43: p. 4773–4780

    Article  CAS  Google Scholar 

  77. Müller, M., Polyelectrolyte Complexes in the Dispersed and Solid State II: Application Aspects. Advances in Polymer Science. Vol. 256. 2014, Berlin, Heidelberg: Springer Berlin Heidelberg. VII, 264 s. 137 illus., 1 illus. in color. : online resource.

    Google Scholar 

  78. Bertin, A., Polyelectrolyte complexes of DNA and polycations as gene delivery vectors. Advances in Polymer Science, 2014. 256: p. 103–196

    Article  CAS  Google Scholar 

  79. Müller, M., Sizing, shaping and pharmaceutical applications of polyelectrolyte complex nanoparticles. Advances in Polymer Science, 2014. 256: p. 197–260

    Article  Google Scholar 

  80. Hud, N.V. and K.H. Downing, Cryoelectron microscopy of l-phage DNA condensates in vitreous ice: The fine structure of DNA toroids. Proc. Natl. Acad. Sci. U. S. A., 2001. 98: p. 14925–14930

    Article  CAS  Google Scholar 

  81. Maurstad, G. and B.T. Stokke, Metastable and stable states of xanthan polyelectrolyte complexes studied by atomic force microscopy. Biopolymers, 2004. 74: p. 199–213.

    Article  CAS  Google Scholar 

  82. Priftis, D. and M. Tirrell, Phase behaviour and complex coacervation of aqueous polypeptide solutions. Soft Matter, 2012. 8(36): p. 9396–9405

    Article  CAS  Google Scholar 

  83. Spruijt, E., et al., Direct measurement of the strength of single ionic bonds between hydrated charges. ACS Nano, 2012. 6(6): p. 5297–5303

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Takemasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Takemasa, M., Round, A.N., Sletmoen, M., Stokke, B.T. (2017). Bridging the Gap Between Single-Molecule Unbinding Properties and Macromolecular Rheology. In: Kaneda, I. (eds) Rheology of Biological Soft Matter. Soft and Biological Matter. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56080-7_1

Download citation

Publish with us

Policies and ethics