Skip to main content

Abnormal d-Serine Metabolism in Amyotrophic Lateral Sclerosis

  • Chapter
  • First Online:
D-Amino Acids

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, whose pathology is characterized by death of upper and lower motor neurons, inclusion bodies in remaining neurons and glia, and glial activation around the neurons. The pathophysiological mechanisms underlying ALS are multifactorial and remain to be fully elucidated. Here, we review d-serine-related findings in ALS and delineate how d-serine metabolism is disturbed and why such d-serine derangement could potentially be toxic to motoneurons.

Motoneurons are vulnerable to glutamate excitotoxicity. d-Serine is an endogenous coagonist with glutamate for stimulation of N-methyl-d-aspartate (NMDA) subtype glutamate receptors. d-Serine accumulates progressively in the spinal cord of a mouse model of familial ALS, in which human superoxide dismutase 1 (SOD1) with a mutation G93A is overexpressed. Such accumulation was also reported in a few patients with sporadic ALS or familial ALS with A4T-SOD1. The d-serine accumulation in the mouse model is explained by a combination of increased d-serine-producing enzyme and decreased d-serine-degrading enzyme, d-amino acid oxidase (DAO), which are both found in activated glial cells. Importantly, a dominant negative mutation D199W in DAO has been reported in patients with familial ALS that exhibits classical motor symptoms of ALS. The mutant D199W-DAO increases autophagy in motor neurons through activation of NMDA receptors by d-serine, which results in motoneuronal apoptosis. Furthermore, a null mutation G181R in DAO significantly increases d-serine level in the spinal cord with mild motoneuronal degeneration in mice. Collectively, aberrant metabolism of d-serine in glial cells may trigger motoneuronal degeneration, which sheds light on a unique aspect of ALS pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alstermark B, Ogawa J, Isa T (2004) Lack of monosynaptic corticomotoneuronal EPSPs in rats: disynaptic EPSPs mediated via reticulospinal neurons and polysynaptic EPSPs via segmental interneurons. J Neurophysiol 91(4):1832–1839. doi:10.1152/jn.00820.2003

    Article  CAS  PubMed  Google Scholar 

  • Basu AC, Tsai GE, Ma CL, Ehmsen JT, Mustafa AK, Han L, Jiang ZI, Benneyworth MA, Froimowitz MP, Lange N, Snyder SH, Bergeron R, Coyle JT (2009) Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 14(7):719–727. doi:10.1038/mp.2008.130

    Article  CAS  PubMed  Google Scholar 

  • Bensimon G, Lacomblez L, Meininger V (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 330(9):585–591. doi:10.1056/NEJM199403033300901

    Article  CAS  PubMed  Google Scholar 

  • Bogaert E, d’Ydewalle C, Van Den Bosch L (2010) Amyotrophic lateral sclerosis and excitotoxicity: from pathological mechanism to therapeutic target. CNS Neurol Disord Drug Targets 9(3):297–304

    Article  CAS  PubMed  Google Scholar 

  • Chio A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, White LA (2013) Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41(2):118–130. doi:10.1159/000351153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058. doi:10.1016/j.cell.2007.11.028

    Article  CAS  PubMed  Google Scholar 

  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2):245–256. doi:10.1016/j.neuron.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58(1):39–46

    Article  CAS  PubMed  Google Scholar 

  • Furukawa H, Gouaux E (2003) Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J 22(12):2873–2885. doi:10.1093/emboj/cdg303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto A, Nishikawa T, Konno R, Niwa A, Yasumura Y, Oka T, Takahashi K (1993) Free d-serine, d-aspartate and d-alanine in central nervous system and serum in mutant mice lacking d-amino acid oxidase. Neurosci Lett 152(1–2):33–36

    Article  CAS  PubMed  Google Scholar 

  • Inoue R, Hashimoto K, Harai T, Mori H (2008) NMDA- and beta-amyloid1-42-induced neurotoxicity is attenuated in serine racemase knock-out mice. J Neurosci 28(53):14486–14491. doi:10.1523/JNEUROSCI.5034-08.2008

    Article  CAS  PubMed  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325(6104):529–531. doi:10.1038/325529a0

    Article  CAS  PubMed  Google Scholar 

  • Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard JP, Lacomblez L, Pochigaeva K, Salachas F, Pradat PF, Camu W, Meininger V, Dupre N, Rouleau GA (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40(5):572–574. doi:10.1038/ng.132

    Article  CAS  PubMed  Google Scholar 

  • Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377(9769):942–955. doi:10.1016/S0140-6736(10)61156-7

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH Jr (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323(5918):1205–1208. doi:10.1126/science.1166066

    Article  CAS  PubMed  Google Scholar 

  • Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V (1996) Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 347(9013):1425–1431

    Article  CAS  PubMed  Google Scholar 

  • Leblond CS, Kaneb HM, Dion PA, Rouleau GA (2014) Dissection of genetic factors associated with amyotrophic lateral sclerosis. Exp Neurol 262:91–101. doi:10.1016/j.expneurol.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  • Lemon RN (2008) Descending pathways in motor control. Annu Rev Neurosci 31:195–218. doi:10.1146/annurev.neuro.31.060407.125547

    Article  CAS  PubMed  Google Scholar 

  • Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59(7):1077–1079

    Article  PubMed  Google Scholar 

  • Lomen-Hoerth C, Murphy J, Langmore S, Kramer JH, Olney RK, Miller B (2003) Are amyotrophic lateral sclerosis patients cognitively normal? Neurology 60(7):1094–1097

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Sekiguchi M, Hashimoto A, Tomita U, Nishikawa T, Wada K (1995) Functional comparison of d-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration. J Neurochem 65(1):454–458

    Article  CAS  PubMed  Google Scholar 

  • McBain CJ, Kleckner NW, Wyrick S, Dingledine R (1989) Structural requirements for activation of the glycine coagonist site of N-methyl-d-aspartate receptors expressed in Xenopus oocytes. Mol Pharmacol 36(4):556–565

    CAS  PubMed  Google Scholar 

  • Mitchell J, Paul P, Chen HJ, Morris A, Payling M, Falchi M, Habgood J, Panoutsou S, Winkler S, Tisato V, Hajitou A, Smith B, Vance C, Shaw C, Mazarakis ND, de Belleroche J (2010) Familial amyotrophic lateral sclerosis is associated with a mutation in d-amino acid oxidase. Proc Natl Acad Sci U S A 107(16):7556–7561. doi:10.1073/pnas.0914128107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miya K, Inoue R, Takata Y, Abe M, Natsume R, Sakimura K, Hongou K, Miyawaki T, Mori H (2008) Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol 510(6):641–654. doi:10.1002/cne.21822

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi Y, Hamase K, Tojo Y, Mita M, Konno R, Zaitsu K (2009) Determination of d-serine and d-alanine in the tissues and physiological fluids of mice with various d-amino-acid oxidase activities using two-dimensional high-performance liquid chromatography with fluorescence detection. J Chromatogr B Anal Technol Biomed Life Sci 877(24):2506–2512. doi:10.1016/j.jchromb.2009.06.028

    Article  CAS  Google Scholar 

  • Miyoshi Y, Konno R, Sasabe J, Ueno K, Tojo Y, Mita M, Aiso S, Hamase K (2012) Alteration of intrinsic amounts of d-serine in the mice lacking serine racemase and d-amino acid oxidase. Amino Acids 43(5):1919–1931. doi:10.1007/s00726-012-1398-4

    Article  CAS  PubMed  Google Scholar 

  • Morikawa A, Hamase K, Inoue T, Konno R, Niwa A, Zaitsu K (2001) Determination of free d-aspartic acid, d-serine and d-alanine in the brain of mutant mice lacking d-amino acid oxidase activity. J Chromatogr B Biomed Sci Appl 757(1):119–125

    Article  CAS  PubMed  Google Scholar 

  • Morikawa A, Hamase K, Zaitsu K (2003) Determination of d-alanine in the rat central nervous system and periphery using column-switching high-performance liquid chromatography. Anal Biochem 312(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) d-serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci U S A 97(9):4926–4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagata Y, Horiike K, Maeda T (1994) Distribution of free d-serine in vertebrate brains. Brain Res 634(2):291–295

    Article  CAS  PubMed  Google Scholar 

  • Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH (2006) Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125(4):775–784. doi:10.1016/j.cell.2006.02.051

    Article  CAS  PubMed  Google Scholar 

  • Papouin T, Ladepeche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150(3):633–646. doi:10.1016/j.cell.2012.06.029

    Article  CAS  PubMed  Google Scholar 

  • Paul P, Murphy T, Oseni Z, Sivalokanathan S, de Belleroche JS (2014) Pathogenic effects of amyotrophic lateral sclerosis-linked mutation in d-amino acid oxidase are mediated by d-serine. Neurobiol Aging 35(4):876–885. doi:10.1016/j.neurobiolaging.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  • Philips T, Rothstein JD (2014) Glial cells in amyotrophic lateral sclerosis. Exp Neurol. doi:10.1016/j.expneurol.2014.05.015

    PubMed  PubMed Central  Google Scholar 

  • Phukan J, Elamin M, Bede P, Jordan N, Gallagher L, Byrne S, Lynch C, Pender N, Hardiman O (2012) The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry 83(1):102–108. doi:10.1136/jnnp-2011-300188

    Article  PubMed  Google Scholar 

  • Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita VM, Kaivorinne AL, Holtta-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chio A, Restagno G, Borghero G, Sabatelli M, Consortium I, Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–268. doi:10.1016/j.neuron.2011.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renton AE, Chio A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17(1):17–23. doi:10.1038/nn.3584

    Article  CAS  PubMed  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62. doi:10.1038/362059a0

    Article  CAS  PubMed  Google Scholar 

  • Sasabe J, Aiso S (2010) Aberrant control of motoneuronal excitability in amyotrophic lateral sclerosis: excitatory glutamate/d-serine vs. inhibitory glycine/gamma-aminobutanoic acid (GABA). Chem Biodivers 7(6):1479–1490. doi:10.1002/cbdv.200900306

    Article  CAS  PubMed  Google Scholar 

  • Sasabe J, Chiba T, Yamada M, Okamoto K, Nishimoto I, Matsuoka M, Aiso S (2007) d-serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis. EMBO J 26(18):4149–4159. doi:10.1038/sj.emboj.7601840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasabe J, Miyoshi Y, Suzuki M, Mita M, Konno R, Matsuoka M, Hamase K, Aiso S (2012) d-amino acid oxidase controls motoneuron degeneration through d-serine. Proc Natl Acad Sci U S A 109(2):627–632. doi:10.1073/pnas.1114639109

    Article  CAS  PubMed  Google Scholar 

  • Sasabe J, Suzuki M, Imanishi N, Aiso S (2014) Activity of d-amino acid oxidase is widespread in the human central nervous system. Front Synaptic Neurosci 6:14. doi:10.3389/fnsyn.2014.00014

    Article  PubMed  PubMed Central  Google Scholar 

  • Shleper M, Kartvelishvily E, Wolosker H (2005) d-serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices. J Neurosci 25(41):9413–9417. doi:10.1523/JNEUROSCI.3190-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Sreedharan J, Brown RH Jr (2013) Amyotrophic lateral sclerosis: problems and prospects. Ann Neurol 74(3):309–316. doi:10.1002/ana.24012

    Article  CAS  PubMed  Google Scholar 

  • Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E, Baralle F, de Belleroche J, Mitchell JD, Leigh PN, Al-Chalabi A, Miller CC, Nicholson G, Shaw CE (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319(5870):1668–1672. doi:10.1126/science.1154584

    Article  CAS  PubMed  Google Scholar 

  • Thompson M, Marecki JC, Marinesco S, Labrie V, Roder JC, Barger SW, Crow JP (2012) Paradoxical roles of serine racemase and d-serine in the G93A mSOD1 mouse model of amyotrophic lateral sclerosis. J Neurochem 120(4):598–610. doi:10.1111/j.1471-4159.2011.07601.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-Chalabi A, Leigh PN, Blair IP, Nicholson G, de Belleroche J, Gallo JM, Miller CC, Shaw CE (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323(5918):1208–1211. doi:10.1126/science.1165942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vucic S, Rothstein JD, Kiernan MC (2014) Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends Neurosci 37(8):433–442. doi:10.1016/j.tins.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  • Wolosker H (2011) Serine racemase and the serine shuttle between neurons and astrocytes. Biochim Biophys Acta 1814(11):1558–1566. doi:10.1016/j.bbapap.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Barger SW (2004) Induction of serine racemase by inflammatory stimuli is dependent on AP-1. Ann N Y Acad Sci 1035:133–146. doi:10.1196/annals.1332.009

    Article  CAS  PubMed  Google Scholar 

  • Yang HW, Lemon RN (2003) An electron microscopic examination of the corticospinal projection to the cervical spinal cord in the rat: lack of evidence for cortico-motoneuronal synapses. Exp Brain Res 149(4):458–469. doi:10.1007/s00221-003-1393-9

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jumpei Sasabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Sasabe, J., Aiso, S. (2016). Abnormal d-Serine Metabolism in Amyotrophic Lateral Sclerosis. In: Yoshimura, T., Nishikawa, T., Homma, H. (eds) D-Amino Acids. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56077-7_9

Download citation

Publish with us

Policies and ethics