Skip to main content

d-Serine and the Pathophysiology of Schizophrenia

  • Chapter
  • First Online:
D-Amino Acids

Abstract

Schizophrenia is a chronic, disabling psychiatric disorder characterized by psychosis, cognitive impairments, and negative symptoms such as social withdrawal and anhedonia. Pathologic changes in the brain include cortical atrophy, loss of pyramidal cell dendritic complexity and spine density, ventricular enlargement, and reduction in intracellular mediators of neuronal plasticity. Acute blockade of N-methyl-d-aspartate receptors (NMDARs) with ketamine reproduces the full range of symptoms of schizophrenia in normal volunteers. A recent genome-wide association study revealed that many of the risk genes for schizophrenia interact directly with the NMDAR such as serine racemase (SR), which synthesizes its co-agonist, d-serine, or downstream mediators of NMDAR activity. Consistent with the genetic findings, alterations in the levels of SR, d-serine, and d-amino acid oxidase have been found in schizophrenia. Genetically silencing the SR gene (SR−/−) in mice causes an 85 % reduction of d-serine in the brain and reproduces the synaptic neuropathology of schizophrenia as well as the cognitive deficits and anhedonia. Treatment of adult SR−/− mice with d-serine to restore brain levels reverses most of the neuropathology and the cognitive deficits. Placebo-controlled clinical trials in schizophrenic patients on antipsychotic drugs with d-serine or agents that act at its site on the NMDAR have shown significant reductions in symptoms including psychosis. These findings support the hypothesis that drugs that enhance NMDAR function might be effective treatments for schizophrenia, especially the cognitive and negative symptoms, which are unaffected by current treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anis NA, Berry SC, Burton NR, Lodge D (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79:565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arinami T, Itokawa M, Enguchi H, Tagaya H, Yano S, Shimizu H, Hamaguchi H, Toru M (1994) Association of dopamine D2 receptor molecular variant with schizophrenia. Lancet 343:703–704

    Article  CAS  PubMed  Google Scholar 

  • Bading H (2013) Nuclear calcium signalling in the regulation of brain function. Nat Rev Neurosci 14(9):593–608

    Article  CAS  PubMed  Google Scholar 

  • Balu DT, Coyle JT (2012) Neuronal d-serine regulates dendritic architecture in the somatosensory cortex. Neurosci Lett 517(2):77–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balu DT, Coyle JT (2014) Chronic d-serine reverses arc expression and partially rescues dendritic abnormalities in a mouse model of NMDA receptor hypofunction. Neurochem Int 75:76–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balu DT, Coyle JT (2015) The NMDA receptor ‘glycine modulatory site’ in schizophrenia: d-serine, glycine, and beyond. Curr Opin Pharmacol 20:109–115

    Article  CAS  PubMed  Google Scholar 

  • Balu DT, Basu AC, Corradi JP, Cacace AM, Coyle JT (2012) The NMDA receptor co-agonists, d-serine and glycine, regulate neuronal dendritic architecture in the somatosensory cortex. Neurobiol Dis 45(2):671–682

    Article  CAS  PubMed  Google Scholar 

  • Balu DT, Li Y, Puhl MD, Benneyworth MA, Basu AC, Takagi S, Bolshakov VY, Coyle JT (2013) Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proc Natl Acad Sci U S A 110(26):E2400–E2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balu DT, Takagi S, Puhl MD, Benneyworth MA, Coyle JT (2014) d-serine and serine racemase are localized to neurons in the adult mouse and human forebrain. Cell Mol Neurobiol 34(3):419–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bang M, Kim KR, Song YY, Baek S, Lee E, An SK (2015) Neurocognitive impairments in individuals at ultra-high risk for psychosis: who will really convert? Aust N Z J Psychiatry 49:462–470

    Article  PubMed  Google Scholar 

  • Baruah S, Waziri R, Hegwood TS, Mallis LM (1991) Plasma serine in schizophrenics and controls measured by gas chromatography-mass spectrometry. Psychiatry Res 37(3):261–270

    Article  CAS  PubMed  Google Scholar 

  • Basu AC, Tsai GE, Ma CL, Ehmsen JT, Mustafa AK, Han L, Jiang ZI, Benneyworth MA, Froimowitz MP, Lange N, Snyder SH, Bergeron R, Coyle JT (2009) Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 14(7):719–727

    Article  CAS  PubMed  Google Scholar 

  • Bendikov I, Nadri C, Amar S, Panizzutti R, De Miranda J, Wolosker H, Agam G (2007) A CSF and postmortem brain study of d-serine metabolic parameters in schizophrenia. Schizophr Res 90(1–3):41–51

    Article  PubMed  Google Scholar 

  • Benes FM, Vincent SL, Alsterberg G, Bird ED, SanGiovanni JP (1992) Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. J Neurosci 12(3):924–929

    CAS  PubMed  Google Scholar 

  • Benes FM, Vincent SL, Marie A, Khan Y (1996) Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 75(4):1021–1031

    Article  CAS  PubMed  Google Scholar 

  • Benneyworth MA, Li Y, Basu AC, Bolshakov VY, Coyle JT (2012) Cell selective conditional null mutations of serine racemase demonstrate a predominate localization in cortical glutamatergic neurons. Cell Mol Neurobiol 32(4):613–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger AJ, Dieudonné S, Ascher P (1998) Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J Neurophysiol 80(6):3336–3340

    CAS  PubMed  Google Scholar 

  • Bergeron R, Meyer TM, Coyle JT, Greene RW (1998) Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci U S A 95(26):15730–15734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird ED, Spokes EG, Barnes J, MacKay AV, Iversen LL, Shepherd M (1977) Increased brain dopamine and reduced glutamic acid decarboxylase and choline acetyl transferase activity in schizophrenia and related psychoses. Lancet 2(8049):1157–1158

    Article  CAS  PubMed  Google Scholar 

  • Bird ED, Spokes EG, Barnes J, Mackay AV, Iversen LL, Shepherd M (1978) Glutamic-acid decarboxylase in schizophrenia. Lancet 1(8056):156

    Article  CAS  PubMed  Google Scholar 

  • Bowers MB Jr, Swigar ME (1983) Vulnerability to psychosis associated with hallucinogen use. Psychiatry Res 9(2):91–97

    Article  PubMed  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258

    Article  CAS  Google Scholar 

  • Buchanan RW, Javitt DC, Marder SR, Schooler NR, Gold JM, McMahon RP, Heresco-Levy U, Carpenter WT (2007) The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am J Psychiatry 164:1593–1602

    Article  PubMed  Google Scholar 

  • Chang X, Xi YB, Cui LB, Wang HN, Sun JB, Zhu YQ, Huang P, Collin G, Liu K, Xi M, Qi S, Tan QR, Miao DM, Yin H (2015) Distinct inter-hemispheric dysconnectivity in schizophrenia patients with and without auditory verbal hallucinations. Sci Rep 5:11218

    Article  PubMed  PubMed Central  Google Scholar 

  • Coyle JT, Tsai G, Goff DC (2002) Ionotropic glutamate receptors as therapeutic targets in schizophrenia. Curr Drug Targets CNS Neurol Disord 1(2):183–189

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT, Balu D, Benneyworth MA, Basu AC, Roseman A (2010) Beyond the dopamine receptor: novel therapeutic targets for treating schizophrenia. Dialogues Clin Neurosci 12:233–270

    Google Scholar 

  • Crocq MA, Mant R, Asherson P et al (1992) Association between schizophrenia and homozygosity at the dopamine D3 receptor gene. J Med Genet 29:858–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Peri L, Crescini A, Deste G, Fusar-Poli P, Sacchetti E, Vita A (2012) Brain structural abnormalities at the onset of schizophrenia and bipolar disorder: a meta-analysis of controlled magnetic resonance imaging studies. Curr Pharm Des 18:486–494

    Article  PubMed  Google Scholar 

  • DeLisi LE, Szulc KU, Bertisch HC, Majcher M, Brown K (2006) Understanding structural brain changes in schizophrenia. Dialogues Clin Neurosci 8:71–78

    PubMed  PubMed Central  Google Scholar 

  • DeVito LM, Balu DT, Kanter BR, Lykken C, Basu AC, Coyle JT, Eichenbaum H (2011) Serine racemase deletion disrupts memory for order and alters cortical dendritic morphology. Genes Brain Behav 10:210–222

    Article  CAS  PubMed  Google Scholar 

  • Diez H, Garrido JJ, Wandosell F (2012) Specific roles of Akt iso forms in apoptosis and axon growth regulation in neurons. PLoS One 7:e32715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ermilov M, Gelfin E, Levin R, Lichtenberg P, Hashimoto K, Javitt DC, Heresco-Levy U (2013) A pilot double-blind comparison of d-serine and high-dose olanzapine in treatment-resistant patients with schizophrenia. Schizophr Res 150:604–605

    Article  PubMed  Google Scholar 

  • Farrell MS, Werge T, Sklar P, Owen MJ, Ophoff RA, O’Donovan MC, Corvin A, Cichon S, Sullivan PF (2015) Evaluating historical candidate genes for schizophrenia. Mol Psychiatry 20:555–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fung SJ, Webster MJ, Sivagnanasundaram S, Duncan C, Elashoff M, Weickert CS (2010) Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. Am J Psychiatry 167:1479–1488

    Article  PubMed  Google Scholar 

  • Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73

    Article  CAS  PubMed  Google Scholar 

  • Glasgow NG, Siegler Retchless B, Johnson JW (2015) Molecular bases of NMDA receptor subtype-dependent properties. J Physiol 593:83–95

    Article  CAS  PubMed  Google Scholar 

  • Goff DC, Coyle JT (2001) The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 158:1367–1377

    Article  CAS  PubMed  Google Scholar 

  • Goff DC, Tsai G, Beal MF, Coyle JT (1995a) Tardive dyskinesia and substrates of energy metabolism in CSF. Am J Psychiatry 152:1730–1736

    Article  CAS  PubMed  Google Scholar 

  • Goff DC, Tsai G, Manoach DS, Coyle JT (1995b) Dose-finding trial of d-cycloserine added to neuroleptics for negative symptoms in schizophrenia. Am J Psychiatry 152:1213–1215

    Article  CAS  PubMed  Google Scholar 

  • Goff DC, Tsai G, Levitt J, Amico E, Manoach D, Schoenfeld DA, Hayden DL, McCarley R, Coyle JT (1999) A placebo-controlled trial of d-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatry 56:21–27

    Article  CAS  PubMed  Google Scholar 

  • Goff DC, Heckers S, Freudenreich O (2001) Schizophrenia. Med Clin North Am 85:663–689

    Article  CAS  PubMed  Google Scholar 

  • Goff DC, Herz L, Posever T, Shih V, Tsai G, Henderson DC, Freudenreich O, Evins AE, Yovel I, Zhang H, Schoenfeld D (2005) A six-month, placebo-controlled trial of d-cycloserine co-administered with conventional antipsychotics in schizophrenia patients. Psychopharmacology (Berl) 179:144–150

    Article  CAS  Google Scholar 

  • Hanada S, Mita T, Nishino N, Tanaka C (1987) [3H]muscimol binding sites increased in autopsied brains of chronic schizophrenics. Life Sci 40:259–266

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto A, Oka T (1997) Free D-aspartate and d-serine in the mammalian brain and periphery. Prog Neurobiol 52:325–353

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto A, Nishikawa T, Hayashi T, Fujii N, Harada K, Oka T, Takahashi K (1992) The presence of free d-serine in rat brain. FEBS Lett 296:33–36

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, Nakazato M, Kumakiri C, Okada S, Hasegawa H, Imai K, Iyo M (2003) Decreased serum levels of d-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 60:572–576

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Engberg G, Shimizu E, Nordin C, Lindström LH, Iyo M (2005) Reduced d-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 29:767–769

    Article  CAS  PubMed  Google Scholar 

  • Haug JO (1982) Pneumoencephalographic evidence of brain atrophy in acute and chronic schizophrenic patients. Acta Psychiatr Scand 66:374–378

    Article  CAS  PubMed  Google Scholar 

  • Heresco-Levy U, Silipo G, Javitt DC (1996) Glycinergic augmentation of NMDA receptor-mediated neurotransmission in the treatment of schizophrenia. Psychopharmacol Bull 32:731–740

    CAS  PubMed  Google Scholar 

  • Heresco-Levy U, Bar G, Levin R, Ermilov M, Ebstein RP, Javitt DC (2007) High glycine levels are associated with prepulse inhibition deficits in chronic schizophrenia patients. Schizophr Res 91:14–21

    Article  PubMed  Google Scholar 

  • Ho BC, Andreasen NC et al (2011) Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry 68:128–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoftman GD, Volk DW, Bazmi HH, Li S, Sampson AR, Lewis DA (2015) Altered cortical expression of GABA-related genes in schizophrenia: illness progression vs developmental disturbance. Schizophr Bull 41:180–191

    Article  PubMed  Google Scholar 

  • Horton LE, Tarbox SI, Olino TM, Haas GL (2015) Trajectories of premorbid childhood and adolescent functioning in schizophrenia-spectrum psychoses: a first-episode study. Psychiatry Res 227:339–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes EG, Peng X, Gleichman AJ, Lai M, Zhou L, Tsou R, Parsons TD, Lynch DR, Dalmau J, Balice-Gordon RJ (2010) Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci 30:5866–5875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Impagnatiello F, Pesold C, Longone P, Caruncho H, Fritschy JM, Costa E, Guidotti A (1996) Modifications of gamma-aminobutyric acidA receptor subunit expression in rat neocortex during tolerance to diazepam. Mol Pharmacol 49:822–831

    CAS  PubMed  Google Scholar 

  • Itil T, Keskiner A, Kiremitci N, Holden JM (1967) Effect of phencyclidine in chronic schizophrenics. Can Psychiatr Assoc J 12:209–212

    CAS  PubMed  Google Scholar 

  • Jacoby A, Winkler H (1927) Encephalographischen studien an schizophrenen. Arch Psycho 84:208–226

    Article  Google Scholar 

  • Javitt DC, Zylberman I, Zukin SR, Heresco-Levy U, Lindenmayer JP (1994) Amelioration of negative symptoms in schizophrenia by glycine. Am J Psychiatry 151:1234–1236

    Article  CAS  PubMed  Google Scholar 

  • Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H (2006) Neuron-derived d-serine release provides a novel means to activate N-methyl-D-aspartate receptors. J Biol Chem 281:14151–14162

    Article  CAS  PubMed  Google Scholar 

  • Keefe RS, Bilder RM, Harvey PD et al (2006) Baseline neurocognitive deficits in the CATIE schizophrenia trial. Neuropsychopharmacology 31:2033–2046

    Article  PubMed  Google Scholar 

  • Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Van Heertum RL, Cooper TB, Carlsson A, Laruelle M (2000) Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 48:627–640

    Article  CAS  PubMed  Google Scholar 

  • Kendler KS, Diehl SR (1993) The genetics of schizophrenia: a current, genetic-epidemiologic perspective. Schizophr Bull 19:261–285

    Article  CAS  PubMed  Google Scholar 

  • Kety SS (1959) Biochemical theories of schizophrenia. II. Science 129:1590–1596

    Article  CAS  PubMed  Google Scholar 

  • Kirov G, Pocklington AJ, Holmans P et al (2012) De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 17:142–153

    Article  CAS  PubMed  Google Scholar 

  • Konopaske GT, Lange N, Coyle JT, Benes FM (2014) Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiatry 71:1323–1331

    Article  PubMed  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD et al (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    Article  CAS  PubMed  Google Scholar 

  • Kumashiro S, Hashimoto A, Nishikawa T (1995) Free d-serine in post-mortem brains and spinal cords of individuals with and without neuropsychiatric diseases. Brain Res 681:117–125

    Article  CAS  PubMed  Google Scholar 

  • Kuperberg GR, Broome MR, McGuire PK et al (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60:878–888

    Article  PubMed  Google Scholar 

  • Lahti AC, Weiler MA, TamaraMichaelidis BA, Parwani A, Tamminga CA (2001) Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 25:455–467

    Article  CAS  PubMed  Google Scholar 

  • Lane HY, Chang YC, Liu YC, Chiu CC, Tsai GE (2005) Sarcosine or d-serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled study. Arch Gen Psychiatry 62:1196–1204

    Article  CAS  PubMed  Google Scholar 

  • Leiderman E, Zylberman I, Zukin SR, Cooper TB, Javitt DC (1996) Preliminary investigation of high-dose oral glycine on serum levels and negative symptoms in schizophrenia: an open-label trial. Biol Psychiatry 39:213–215

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA (2014) Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Curr Opin Neurobiol 26:22–26

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Sacchi S, Pollegioni L, Basu AC, Coyle JT, Bolshakov VY (2013) Identity of endogenous NMDAR glycine site agonist in amygdala is determined by synaptic activity level. Nat Commun 4:1760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA (2008) Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 31:234–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R (1959) Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 81:363–369

    Article  CAS  PubMed  Google Scholar 

  • Luykx JJ, Bakker SC, Visser WF et al (2015) Genome-wide association study of NMDA receptor coagonists in human cerebrospinal fluid and plasma. Mol Psychiatry 20:1557–1564.

    Article  CAS  PubMed  Google Scholar 

  • Mancuso JJ, Chen Y, Li X, Xue Z, Wong ST (2013) Methods of dendritic spine detection: from Golgi to high-resolution optical imaging. Neuroscience 251:129–140

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Sekiguchi M, Hashimoto A, Tomita U, Nishikawa T, Wada K (1995) Functional comparison of d-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration. J Neurochem 65:454–458

    Article  CAS  PubMed  Google Scholar 

  • McBain CJ, Kleckner NW, Wyrick S, Dingledine R (1989) Structural requirements for activation of the glycine coagonist site of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Mol Pharmacol 36:556–565

    CAS  PubMed  Google Scholar 

  • Miya K, Inoue R, Takata Y, Abe M, Natsume R, Sakimura K, Hongou K, Miyawaki T, Mori H (2008) Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol 510:641–654

    Article  CAS  PubMed  Google Scholar 

  • Nagata Y, Akino T, Ohno K (1989) The presence of free d-amino acids in mouse tissues. Experientia 45:330–332

    Article  CAS  PubMed  Google Scholar 

  • Neeman G, Blanaru M, Bloch B, Kremer I, Ermilov M, Javitt DC, Heresco-Levy U (2005) Relation of plasma glycine, serine, and homocysteine levels to schizophrenia symptoms and medication type. Am J Psychiatry 162:1738–1740

    Article  PubMed  Google Scholar 

  • Nelson B, Yuen HP, Wood SJ, Lin A et al (2013) Long-term follow-up of a group at ultra high risk (“prodromal”) for psychosis: the PACE 400 study. JAMA Psychiatry 70:793–802

    Article  PubMed  Google Scholar 

  • Papouin T, Ladépêche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 15:633–646

    Article  CAS  Google Scholar 

  • Puhl MD, Mintzopoulos D, Jensen JE, Gillis TE, Konopaske GT, Kaufman MJ, Coyle JT (2014) In vivo magnetic resonance studies reveal neuroanatomical and neurochemical abnormalities in the serine racemase knockout mouse model of schizophrenia. Neurobiol Dis 73C:269–274

    Google Scholar 

  • Rosenberg D, Artoul S, Segal AC, Kolodney G, Radzishevsky I, Dikopoltsev E, Foltyn VN, Inoue R, Mori H, Billard JM, Wolosker H (2013) Neuronal d-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci 33:3533–3544

    Article  CAS  PubMed  Google Scholar 

  • Rosse RB, Theut SK, Banay-Schwartz M, Leighton M, Scarcella E, Cohen CG, Deutsch SI (1989) Glycine adjuvant therapy to conventional neuroleptic treatment in schizophrenia: an open-label, pilot study. Clin Neuropharmacol 12:416–424

    Article  CAS  PubMed  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) d-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A 92:3948–3952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiffman J, Walker E, Ekstrom M, Schulsinger F et al (2004) Childhood videotaped social and neuromotor precursors of schizophrenia: a prospective investigation. Am J Psychiatry 161:2021–2027

    Article  PubMed  Google Scholar 

  • Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427

    Article  PubMed Central  CAS  Google Scholar 

  • Schuster GM, Schmidt WJ (1992) d-cycloserine reverses the working memory impairment of hippocampal-lesioned rats in a spatial learning task. Eur J Pharmacol 224:97–98

    Article  CAS  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1999) The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 45:17–25

    Article  CAS  PubMed  Google Scholar 

  • Selemon LD, Rajkowska G, Goldman-Rakic PS (1995) Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 52:805–818

    Article  CAS  PubMed  Google Scholar 

  • Selemon LD, Rajkowska G, Goldman-Rakic PS (1998) Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: application of a three-dimensional, stereologic counting method. J Comp Neurol 392:402–412

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Hoogenraad CC (2007) The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76:823–847

    Article  CAS  PubMed  Google Scholar 

  • Sommer SS, Lind TJ, Heston LL, Sobell JL (1993) Dopamine D4 receptor variants in unrelated schizophrenic cases and controls. Am J Med Genet 48:90–93

    Article  CAS  PubMed  Google Scholar 

  • Steiner J, Walter M, Glanz W et al (2013) Increased prevalence of diverse N-methyl-D-aspartate glutamate receptor antibodies in patients with an initial diagnosis of schizophrenia: specific relevance of IgG NR1a antibodies for distinction from N-methyl-D-aspartate glutamate receptor encephalitis. JAMA Psychiatry 70:271–278

    Article  PubMed  Google Scholar 

  • Sumiyoshi T, Jin D, Jayathilake K, Lee M, Meltzer HY (2005) Prediction of the ability of clozapine to treat negative symptoms from plasma glycine and serine levels in schizophrenia. Int J Neuropsychopharmacol 8:451–455

    Article  CAS  PubMed  Google Scholar 

  • Sweet RA, Henteleff RA, Zhang W, Sampson AR, Lewis DA (2009) Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology 34:374–389

    Article  PubMed  Google Scholar 

  • Tsai GE, Lin PY (2010) Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des 16:522–537

    Article  CAS  PubMed  Google Scholar 

  • Tsai G, Passani LA, Slusher BS, Carter R, Baer L, Kleinman JE, Coyle JT (1995) Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch Gen Psychiatry 52:829–836

    Article  CAS  PubMed  Google Scholar 

  • Tsai G, Yang P, Chung LC, Lange N, Coyle JT (1998) d-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44:1081–1089

    Article  CAS  PubMed  Google Scholar 

  • Tsai GE, Yang P, Chung LC, Tsai IC, Tsai CW, Coyle JT (1999) d-serine added to clozapine for the treatment of schizophrenia. Am J Psychiatry 156:1822–1825

    CAS  PubMed  Google Scholar 

  • Tu PC, Lee YC, Chen YS, Hsu JW, Li CT, Su TP (2015) Network-specific cortico-thalamic disconnection in schizophrenia revealed by intrinsic functional connectivity analyses. Schizophr Res 166:137–143

    Article  PubMed  Google Scholar 

  • Tune LE, McHugh PR, Coyle JT (1982) Drug management in chronic schizophrenia. Johns Hopkins Med J 150:45–48

    CAS  PubMed  Google Scholar 

  • Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57:1139–1147

    Article  CAS  PubMed  Google Scholar 

  • Volk DW, Pierri JN, Fritschy JM, Auh S, Sampson AR, Lewis DA (2002) Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cereb Cortex 12:1063–1070

    Article  PubMed  Google Scholar 

  • Vorstman JA, Breetvelt EJ, Thode KI, Chow EW, Bassett AS (2013) Expression of autism spectrum and schizophrenia in patients with a 22q11.2 deletion. Schizophr Res 143:55–59

    Article  PubMed  Google Scholar 

  • Weiser M, Heresco-Levy U, Davidson M, Javitt DC, Werbeloff N, Gershon AA, Abramovich Y, Amital D, Doron A, Konas S, Levkovitz Y, Liba D, Teitelbaum A, Mashiach M, Zimmerman Y (2012) A multicenter, add-on randomized controlled trial of low-dose d-serine for negative and cognitive symptoms of schizophrenia. J Clin Psychiatry 73:e728–e734

    Article  CAS  PubMed  Google Scholar 

  • Weiss J, Mägert HJ, Cieslak A, Forssmann WG (1996) Association between different psychotic disorders and the DRD4 polymorphism, but no differences in the main ligand binding region of the DRD4 receptor protein compared to controls. Eur J Med Res 1(9):439–445

    Google Scholar 

  • Williams SJ, Hayward NK (2001) The impact of the Human Genome Project on medical genetics. Trends Mol Med 7:229–231

    Article  CAS  PubMed  Google Scholar 

  • Wolosker H, Blackshaw S, Snyder SH (1999a) Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci U S A 96:13409–13414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris CD, Snyder SH (1999b) Purification of serine racemase: biosynthesis of the neuromodulator d-serine. Proc Natl Acad Sci U S A 96:721–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamori H, Hashimoto R, Fujita Y, Numata S, Yasuda Y, Fujimoto M, Ohi K, Umeda-Yano S, Ito A, Ohmori T, Hashimoto K, Takeda M (2014) Changes in plasma d-serine, l-serine, and glycine levels in treatment-resistant schizophrenia before and after clozapine treatment. Neurosci Lett 582:93–98

    Article  CAS  PubMed  Google Scholar 

  • Yurgelun-Todd DA, Coyle JT, Gruber SA, Renshaw PF, Silveri MM, Amico E, Cohen B, Goff DC (2005) Functional magnetic resonance imaging studies of schizophrenic patients during word production: effects of d-cycloserine. Psychiatry Res 138:23–31

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Coyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Coyle, J.T. (2016). d-Serine and the Pathophysiology of Schizophrenia. In: Yoshimura, T., Nishikawa, T., Homma, H. (eds) D-Amino Acids. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56077-7_7

Download citation

Publish with us

Policies and ethics