Skip to main content

Alanine Racemase and d-Amino Acid Oxidase in Aquatic Animals

  • Chapter
  • First Online:
D-Amino Acids

Abstract

Various aquatic invertebrates including crustaceans and some bivalve mollusks contain a copious amount of free d-alanine in their tissues. In these invertebrates, d-alanine is largely accumulated with the l-form under a high-salinity environment for maintaining cell volume. d-Alanine is a major osmolyte in these invertebrate tissues, together with glycine, l-alanine, l-glutamine, and l-proline, and is responsible for intracellular isosmotic regulation. Alanine racemase, catalyzing the interconversion of d- and l-amino acids, has been isolated to homogeneity from the muscle of black tiger prawn, and its cDNA has been cloned from the muscle and hepatopancreas of kuruma prawn Marsupenaeus japonicus. This is the first time cloning was achieved in eukaryotes other than yeast. Common carp Cyprinus carpio is an omnivorous fish that often feeds on crustaceans and mollusks containing free d-alanine, but that contains only a trace amount of d-alanine in their tissues. A cDNA of d-amino acid oxidase has been cloned from carp hepatopancreas. Carp d-amino acid oxidase is an inducible enzyme. The activity and mRNA levels of d-amino acid oxidase increase in the intestine and are followed by the hepatopancreas and the kidney. Carp d-amino acid oxidase is structurally similar to the porcine kidney enzyme but is enzymatically similar to the yeast enzyme. d-Amino acid oxidase is thought to be an important enzyme responsible for the efficient utilization of the carbon skeleton of food-derived d-alanine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Yoshikawa N, Sarower MDG, Okada S (2005) Physiological function and metabolism of free d-alanine in aquatic animals. Biol Pharm Bull 28:1571–1577

    Article  CAS  PubMed  Google Scholar 

  • Bada JL (1982) Racemization of amino acids in nature. Interdiscip Sci Rev 7:30–46

    Article  CAS  Google Scholar 

  • Curti B, Ronchi S, Pilone MS (1992) d- and l-amino acid oxidase. In: Mller F (ed) Chemistry and biochemistry of flavoenzymes, vol 3. CRC Press, London, pp 69–94

    Google Scholar 

  • D’Aniello A, Giuditta A (1977) Identification of d-aspartic acid in the brain of Octopus vulgaris LAM. J Neurochem 29:1053–1057

    Article  PubMed  Google Scholar 

  • D’Aniello A, Giuditta A (1980) Presence of d-alanine in crustacean muscle and hepatopancreas. Comp Biochm Physiol 60B:319–322

    Google Scholar 

  • D’Aniello A, D’Onofrio G, Pischetola M, D’Aniello G, Vetere A, Petrucelli L, Fisher GH (1993) Biological role of d-amino acid oxidase and d-aspartate oxidase. J Biol Chem 268:26941–26949

    PubMed  Google Scholar 

  • Faotto L, Pollegioni L, Ceciliani F, Ronchi S, Pilone MS (1995) The primary structure of d-amino acid oxidase from Rhodotorula gracilis. Biotechnol Lett 17:193–198

    Article  CAS  Google Scholar 

  • Felbeck H (1985) Occurrence and metabolism of d-aspartate in the gutless bivalve Solemya reidi. J Exp Zool 234:145–149

    Article  CAS  Google Scholar 

  • Felbeck H, Wiley S (1987) Free d-amino acids in the tissues of marine bivalves. Bio Bull 173:252–259

    Article  Google Scholar 

  • Fujimori T, Abe H (2002) Physiological roles of free d- and l-alanine in the crayfish Procambarus clarkii with special reference to osmotic and anoxic stress responses. Comp Biochem Physiol 131A:893–900

    Article  CAS  Google Scholar 

  • Fujita E, Okuma E, Abe H (1997) Partial purification and properties of alanine racemase from the muscle of black tiger prawn Penaeus monodon. Fish Sci 63:440–445

    CAS  Google Scholar 

  • Hoffmann K, Schneider-Scherzer E, Kleinkauf H, Zocher R (1994) Purification and characterization of eukaryotic alanine racemase acting as key enzyme in cyclosporine biosynthesis. J Biol Chem 269:12710–12714

    CAS  PubMed  Google Scholar 

  • Kera Y, Hasegawa S, Watanabe T, Segawa H, Yamada R (1998) d-aspartate oxidase and free acidic d-amino acids in fish tissues. Comp Biochem Physiol 119B:95–100

    Article  CAS  Google Scholar 

  • Konno R, Yasumura Y (1992) d-amino-acid oxidase and its physiological function. Int J Biochem 24:519–524

    Article  CAS  PubMed  Google Scholar 

  • Matsushima O, Katayama H, Yamada K, Kado Y (1984) Occurrence of free d-alanine and alanine racemase activity in bivalve molluscs with special reference to intracellular osmoregulation. Mar Biol Lett 5:217–225

    CAS  Google Scholar 

  • Mattevi A, Vanoni MA, Todone F, Rizzi M, Teplyakov A, Coda A, Bolognesi M, Cuti B (1996) Crystal structure of d-amino acid oxidase: a case of active site mirror-image convergent evolution with flavocytochrome b2. Proc Natl Adad Sci USA 93:7496–7501

    Article  CAS  Google Scholar 

  • Mizutani H, Miyahara I, Hirotsu K, Nishina Y, Shiga K, Setoyama C, Miura R (1996) Three-dimensional structure of porcine kidney d-amino acid oxidase at 3.0 Ã… resolution. J Biochem 120:14–17

    Article  CAS  PubMed  Google Scholar 

  • Nagata Y, Yamada R, Nagasaki H, Konno R, Yasumura Y (1991) Administration of d-alanine did not cause increase of d-amino acid oxidase activity in mice. Experientia 47:835–838

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Yamamoto I, Morishita F, Furukawa Y, Matsushima O (2001) Purification and some properties of alanine racemase from a bivalve mollusc Corbicula japonica. J Exp Zool 289:1–9

    Article  CAS  PubMed  Google Scholar 

  • Okuma E, Abe H (1994) Total d-amino and other free amino acids increase in the muscle of crayfish during seawater acclimation. Comp Biochem Physiol 109A:191–197

    CAS  Google Scholar 

  • Okuma E, Fujita E, Amano H, Noda H, Abe H (1995) Distribution of free d-amino acids in the tissues of crustaceans. Fish Sci 61:157–160

    CAS  Google Scholar 

  • Okuma E, Watanabe K, Abe H (1998) Distribution of free d-amino acids in bivalve mollusks and the effects of physiological conditions on the level of d- and l-alanine in the tissues of the hard clam, Meretrix lusoria. Fish Sci 64:606–611

    Article  CAS  Google Scholar 

  • Pollegioni L, Falbo A, Pilone MS (1992) Specificity and kinetics of Rhodotorula gracilis d-amino acid oxidase. Biochim Biophys Acta 1120:11–16

    Article  CAS  PubMed  Google Scholar 

  • Pollegioni L, Diederichs K, Molla G, Umhau S, Welte W, Ghisla S, Pilone MS (2002) Yeast d-amino acid oxidase: structural basis of its catalytic properties. J Mol Biol 324:535–546

    Article  CAS  PubMed  Google Scholar 

  • Sarower MG, Matsui T, Abe H (2003a) Distribution and characteristics of d-amino acid and d-aspartate oxidases in fish tissues. J Exp Zool 295A:151–159

    Article  CAS  Google Scholar 

  • Sarower MG, Okada S, Abe H (2003b) Molecular characterization of d-amino acid oxidase from common carp Cyprinus carpio and its induction with exogenous free d-alanine. Arch Biochem Biophys 420:121–129

    Article  PubMed  Google Scholar 

  • Sarower MG, Okada S, Abe H (2005) Catalytic and structural characteristics of carp hepatopancreas d-amino acid oxidase expressed in Escherichia coli. Comp Biochem Physiol 140B:417–425

    Article  CAS  Google Scholar 

  • Sarower MG, Okada S, Abe H (2009) Carp d-amino acid oxidase: structural active site basis of its catalytic mechanisms. Science Asia 35:150–155

    Article  CAS  Google Scholar 

  • Shaw JP, Petsko GA, Ringe D (1997) Determination of the structure of alanine racemase from Bacillus stearothermophilus at 1.9-Ã… resolution. Biochemistry 36:1329–1342

    Article  CAS  PubMed  Google Scholar 

  • Shibata K, Shirasuna K, Motegi K, Kera Y, Abe H, Yamada R (2000) Purification and properties of alanine racemase from crayfish Procambarus clarkii. Comp Biochem Physiol 126B:599–608

    Article  CAS  Google Scholar 

  • Shibata K, Watanabe T, Yoshikawa H, Abe K, Takahashi S, Yamada R (2003) Purification and characterization of aspartate racemase from the bivalve mollusk Scapharca broughtonii. Comp Biochem Physiol 134B:307–314

    Article  CAS  Google Scholar 

  • Subramani S (1993) Protein import into peroxisomes and biogenesis of the organelle. Ann Rev Cell Biol 9:445–478

    Article  CAS  PubMed  Google Scholar 

  • Uo T, Yoshimura T, Tanaka N, Takigawa K, Esaki N (2001a) Functional characterization of alanine racemase from Schizosaccharomyces pombe: an eukaryotic counterpart to bacterial alanine racemase. J Bacteriol 183:2226–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uo T, Ueda M, Nishiyama T, Yoshimura T, Esaki N (2001b) Purification and characterization of alanine racemase from hepatopancreas of black-tiger prawn, Penaeus monodon. J Mol Catal B 12:137–144

    Article  CAS  Google Scholar 

  • Watanabe T, Shibata K, Kera Y, Yamada R (1998) Occurrence of free d-aspartate and aspartate racemase in the blood shell Scapharca broughtonii. Amino Acids 14:353–360

    Article  CAS  PubMed  Google Scholar 

  • Watanabe A, Kurokawa T, Yoshimura T, Kurihara K, Soda K, Esaki N (1999a) Role of lysine 39 of alanine racemase from Bacillus stearothermophilus that binds pyridoxal 5′-phosphate. J Biol Chem 274:4189–4194

    Article  CAS  PubMed  Google Scholar 

  • Watanabe A, Yoshimura T, Mikami B, Esaki N (1999b) Tyrosine 265 of alanine racemase as a base abstracting α-hydrogen from l-alanine: the counterpart residues to lysine 39 specific to d-alanine. J Biochem 126:781–786

    Article  CAS  PubMed  Google Scholar 

  • Wierenga RK, Terpstra P, Hol WG (1986) Prediction of the occurrence of the ADP-binding bab-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187:101–107

    Article  CAS  PubMed  Google Scholar 

  • Yamada R, Nagasaki H, Nagata Y, Wakabayashi Y, Iwashima A (1989) Administration of d-aspartate increases d-aspartate oxidase activity in mouse liver. Bhichim Biophys Acta 990:325–328

    Article  CAS  Google Scholar 

  • Yoshikawa N, Dohmae N, Takio K, Abe H (2002) Purification, properties, and partial amino acid sequences of alanine racemase from the muscle of black tiger prawn Penaeus monodon. Comp Biochem Physiol 133B:445–453

    Article  CAS  Google Scholar 

  • Yoshikawa N, Okada S, Abe H (2009) Molecular characterization of alanine racemase in the kuruma prawn Marsupenaeus japonicus. J Biochem 145:249–258

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa N, Ashida W, Hamase K, Abe H (2011) HPLC determination of the distribution of d-amino acids and the effects of ecdysis on alanine racemase activity in kuruma prawn Marsupenaeus japonicas. J Chromatogr B 879:3283–3288

    Article  CAS  Google Scholar 

  • Yoshimura T, Soda K (1994) Alanine racemase: structure and function. In: Fukui T, Soda K (eds) Molecular aspects of enzyme catalysis. Kodansha, Tokyo, pp 147–163

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Abe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Yoshikawa, N., Sarower, M.G., Abe, H. (2016). Alanine Racemase and d-Amino Acid Oxidase in Aquatic Animals. In: Yoshimura, T., Nishikawa, T., Homma, H. (eds) D-Amino Acids. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56077-7_17

Download citation

Publish with us

Policies and ethics