Skip to main content

Physiological Background

  • Chapter
  • First Online:
Aortopathy

Abstract

From the physiological view, the aorta has two functions: conduit function and reservoir function. The typical disorder with the failure of the conduit function is aortic coarctation. On the other hand, the typical condition with the reservoir dysfunction is aging. The histological findings of the aged aorta resemble to that in the aortopathy (decrease of elastin fiber, increase of collagen, calcium deposition, and cystic medial necrosis). The aged aorta increases the systemic ventricular workload, and this is disadvantageous for the coronary perfusion. One of the possible mechanisms of the damage of the aorta is the enhanced pressure wave reflection induced by the heterogeneity or discontinuity of the aortic wall property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murakami T, Ueno M, Takeda A et al (2007) Pressure wave reflection after successful balloon dilatation of aortic coarctation. Circ J 71:1821–1822

    Article  PubMed  Google Scholar 

  2. London GM, Guerin AP (1999) Influence of arterial pulse and reflected waves on blood pressure and cardiac function. Am Heart J 138:S220–S224

    Article  Google Scholar 

  3. Redheuil A, Yu WC, Wu CO et al (2010) Reduced ascending aortic strain and distensibility: easiest manifestations of vascular aging in humans. Hypertension 55:319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Avolio AP, Chen SG, Wang RP et al (1983) Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation 68:50–58

    Article  CAS  PubMed  Google Scholar 

  5. Chernin J, Muller P, Chan S et al (1993) Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 88:62–69

    Article  Google Scholar 

  6. Mitchell JR, Schwartz CJ, Zinger A (1964) Relationship between aortic plaques and age, sex and blood pressure. Br Med J 1(5377):205–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rutz T, Max F, Wahl A et al (2012) Distensibility and diameter of ascending aorta assessed by cardiac magnetic resonance imaging in adults with tetralogy of Fallot or complete transposition. Am J Cardiol 110:103–108

    Article  PubMed  Google Scholar 

  8. Shim CY, Cho IJ, Yang WI et al (2011) Central aortic stiffness and its association with ascending aorta dilation in subjects with a bicuspid aortic valve. J Am Soc Echocardiogr 24:847–852

    Article  PubMed  Google Scholar 

  9. Niwa K (2013) Aortopathy in congenital heart disease in adults: aortic dilatation with decreased aortic elasticity that impacts negatively in left ventricular function. Korean Circ J 43:215–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murakami T, Nakazawa M, Momma K et al (2000) Impaired distensibility of neoaorta after arterial switch procedure. Ann Thorac Surg 70:1907–1910

    Article  CAS  PubMed  Google Scholar 

  11. Saiki H, Kojima T, Seki M et al (2012) Marked disparity in mechanical wall properties between ascending and descending aorta in patients with tetralogy of Fallot. Eur J Cardiothorac Surg 41:570–573

    Article  PubMed  Google Scholar 

  12. Murakami T, Takei K, Ueno M et al (2008) Aortic reservoir function after arterial switch operation in elementary school-aged children. Circ J 72:1291–1295

    Article  PubMed  Google Scholar 

  13. Murakami T, Niwa K (2015) Aortic stiffening and dilation: influence on coronary supply-demand balance. J Am Coll Cardiol 65:2262

    Article  PubMed  Google Scholar 

  14. Murakami T, Shiina Y, Niwa K (2016) Letter by Murakami et al regarding article, “segmental aortic stiffening in children and young adults with connective tissue disorders”. Circulation 133:e9

    Google Scholar 

  15. Nichols WW, O’Rourke MF, Vlachopoulos C (2011) McDonald’s blood flow in arteries, 6th edn. Hodder Arnold, London

    Google Scholar 

  16. O’Rourke MF (1990) Arterial stiffness, systolic blood pressure, and logical treatment of arterial hypertension. Hypertension 15:339–347

    Article  PubMed  Google Scholar 

  17. Raaz U, Zöllner AM, Schellinger IN et al (2015) Segmental aortic stiffening contributes to experimental abdominal aortic aneurysm development. Circulation 131:1783–1795

    Article  PubMed  PubMed Central  Google Scholar 

  18. Murakami T, Takeda A (2005) Enhanced aortic pressure wave reflection in patients after repair of aortic coarctation. Ann Thorac Surg 80:995–1000

    Article  PubMed  Google Scholar 

  19. Murakami T, Tateno S, Kawasoe Y et al (2014) Aortic surgery is one of the risk factors for enhancement of pressure wave reflection in adult patients with congenital heart disease. Int J Cardiol 175:451–454

    Article  PubMed  Google Scholar 

  20. Guzzardi DG, Barker AJ, van Ooij P et al (2015) Valve-related hemodynamics mediate human bicuspid aortopathy. J Am Coll Cardiol 66:892–900

    Article  PubMed  PubMed Central  Google Scholar 

  21. Murakami T, Niwa K (2015) Elastin fracture localized in ascending aorta could be one of the mechanisms of enhanced aortic pressure wave reflection in adult patients with congenital heart disease. Int J Cardiol 194:66–67

    Article  PubMed  Google Scholar 

  22. Murakami T, Shiina Y, Niwa K (2016) Final common pathway of aortic dilation?: heterogeneity of aortic wall property causes the aneurysmal change. J Am Coll Cardiol 67:735–736

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoaki Murakami M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Murakami, T. (2017). Physiological Background. In: Niwa, K., Kaemmerer, H. (eds) Aortopathy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56071-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56071-5_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56069-2

  • Online ISBN: 978-4-431-56071-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics