Skip to main content

Cellular Senescence as a Novel Mechanism of Chronic Inflammation and Cancer Progression

  • Chapter
  • First Online:
Chronic Inflammation
  • 2048 Accesses

Abstract

Cellular senescence is a state of irreversible cell proliferation arrest provoked by a persistent DNA damage induced by a variety of potentially oncogenic signals, and it was initially identified as a tumour-suppression mechanism. Recent studies, however, revealed that senescent cells have the potential to secrete numerous inflammatory cytokines, chemokines, growth factors, and matrix-remodeling factors, because unlike apoptotic cells, senescent cells are viable for a long period of time. This newly identified phenotype of cellular senescence, called senescence-associated secretory phenotype (SASP or senescence-associated secretome), could potentially provide beneficial effects, such as reinforcement of cellular senescence and tissue repair, but sometimes could induce deleterious side effects, such as chronic inflammation and cancer progression, depending on the biological context. Since obesity is associated with chronic inflammation and cancer, we thought that the senescence-associated secretome could be closely involved in the inflammation and tumourigenesis accompanying obesity. In this review, I first discuss the role and the mechanism of cellular senescence, and then introduce the role of senescence-associated secretome in vivo including our recent findings on the mechanism of obesity-associated liver cancer, promoted by the senescence-associated secretome in hepatic stellate cells, which could form a cancer-promoting microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta JC, O’Loghlen A, Banito A et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018

    Article  CAS  PubMed  Google Scholar 

  • Adams PD (2009) Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell 36:2–14

    Article  CAS  PubMed  Google Scholar 

  • Alcorta DA, Xiong Y, Phelps D et al (1996) Involvement of the cyclin-dependent kinase inhibitor p16 INK4a in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A 93:13742–13747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ancrile B, Lim KH, Counter CM (2007) Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev 21:1714–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calle EE, Rodriguez C, Walker-Thurmond K et al (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638

    Article  PubMed  Google Scholar 

  • Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522

    Article  CAS  PubMed  Google Scholar 

  • Chien Y, Scuoppo C, Wang X et al (2011) Control of the senescence-associated secretory phenotype by NF-kB promotes senescence and enhances chemosensitivity. Genes Dev 25:2125–2136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Classon M, Harlow E (2002) The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2:910–917

    Article  CAS  PubMed  Google Scholar 

  • Cobrinik D, Dowdy SF, Hinds PW et al (1992) The retinoblastoma protein and the regulation of cell cycling. Trends Biochem Sci 17:312–315

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10:51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppé JP, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    Article  PubMed  Google Scholar 

  • d’Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8:512–522

    Article  PubMed  Google Scholar 

  • Dannenberg JH, van Rossum A, Schuijff L et al (2000) Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev 14:3051–3064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dapito DH, Mencin A, Gwak GY et al (2012) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21:504–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110

    Article  PubMed  Google Scholar 

  • Demaria M, Ohtani N, Youssef SA et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Chan SS, Chang S (2008) Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer 8:450–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE et al (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448:767–774

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli M, Rossiello F, Clerici M et al (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 14:355–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil J, Peters G (2006) Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7:667–677

    Article  CAS  PubMed  Google Scholar 

  • Haff RF, Swim HE (1956) Serial propagation of 3 strains of rabbit fibroblasts; their susceptibility to infection with vaccinia virus. Proc Soc Exp Biol Med 93:200–204

    Article  CAS  PubMed  Google Scholar 

  • Hara E, Smith R, Parry D, Tahara H, Stone S, Peters G (1996) Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol 16:859–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara E, Tsurui H, Shinozaki A et al (1991) Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1. Biochem Biophys Res Commun 179:528–534

    Article  CAS  PubMed  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  CAS  PubMed  Google Scholar 

  • Haslam DW, James WP (2005) Obesity. Lancet 366:1197–1209

    Article  PubMed  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  CAS  PubMed  Google Scholar 

  • Herbig U, Sedivy JM (2006) Regulation of growth arrest in senescence: telomere damage is not the end of the story. Mech Ageing Dev 127:16–24

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Takahashi A, Hanyu A et al (2014) Crosstalk between the Rb pathway and AKT signaling forms a quiescence-senescence switch. Cell Rep 7:194–207

    Article  CAS  PubMed  Google Scholar 

  • Jun JI, Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12:676–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaaks R, Kühn T (2014) Epidemiology: obesity and cancer-the evidence is fattening up. Nat Rev Endocrinol 10:644–645

    Article  PubMed  Google Scholar 

  • Kang TW, Yevsa T, Woller N et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:547–551

    Article  CAS  PubMed  Google Scholar 

  • Kortlever RM, Higgins PJ, Bernards R (2006) Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8:877–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy J, Torrice C, Ramsey MR et al (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krizhanovsky V, Yon M, Dickins RA et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuilman T, Michaloglou C, Vredeveld LC et al (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031

    Article  CAS  PubMed  Google Scholar 

  • Kuilman T, Peeper DS (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9:81–94

    Article  CAS  PubMed  Google Scholar 

  • Kuilman T, Michaloglou C, Mooi WJ et al (2010) The essence of senescence. Genes Dev 24:2463–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laberge RM, Sun Y, Orjalo AV et al (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 17:1049–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam EW, Brosens JJ, Gomes AR et al (2013) Forkhead box proteins: tuning forks for transcriptional harmony. Nat Rev Cancer 13:482–495

    Article  CAS  PubMed  Google Scholar 

  • Lee MY, Wang Y, Vanhoutte PM (2010) Senescence of cultured porcine coronary arterial endothelial cells is associated with accelerated oxidative stress and activation of NFkB. J Vasc Res 47:287–298

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  • Lloyd AC (2002) Limits to lifespan. Nat Cell Biol 4:E25-7

    Article  PubMed  Google Scholar 

  • Maier JA, Voulalas P, Roeder D et al (1990) Extension of the life-span of human endothelial cells by an interleukin-1 a antisense oligomer. Science 249:1570–1574

    Article  CAS  PubMed  Google Scholar 

  • McConnell BB, Gregory FJ, Stott FJ et al (1999) Induced expression of p16INK4a inhibits both CDK4- and CDK2-associated kinase activity by reassortment of cyclin-CDK-inhibitor complexes. Mol Cell Biol 19:1981–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra J, Dai CY (1999) Somasundaram K, El-Deiry WS, Satyamoorthy K, Herlyn M, Enders GH. Induction of p21WAF1/CIP1 and inhibition of Cdk2 mediated by the tumor suppressor p16INK4a. Mol Cell Biol 19:3916–3928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møller H, Mellemgaard A, Lindvig K et al (1994) Obesity and cancer risk: a Danish record-linkage study. Eur J Cancer 30A:344–350

    Article  PubMed  Google Scholar 

  • Muñoz-Espín D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15:482–496

    Article  PubMed  Google Scholar 

  • Muñoz-Espín D, Cañamero M, Maraver A et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118

    Article  PubMed  Google Scholar 

  • Naka K, Hoshii T, Muraguchi T et al (2010) TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463:676–680

    Article  CAS  PubMed  Google Scholar 

  • Noda A, Ning Y, Venable SF et al (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211:90–98

    Article  CAS  PubMed  Google Scholar 

  • Ohanna M, Giuliano S, Bonet C et al (2011) Senescent cells develop a PARP-1 and nuclear factor-kB-associated secretome (PNAS). Genes Dev 25:1245–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtani N, Zebedee Z, Huot TJ et al (2001) Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409:1067–1070

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Lee JH, Yu GY et al (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:197–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrinello S, Samper E, Krtolica A et al (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne CM, Weber C, Crowley-Skillicorn C et al (2007) Deoxycholate induces mitochondrial oxidative stress and activates NF-kappaB through multiple mechanisms in HCT-116 colon epithelial cells. Carcinogenesis 28:215–222

    Article  CAS  PubMed  Google Scholar 

  • Pribluda A, Elyada E, Wiener Z et al (2013) A senescence-inflammatory switch from cancer-inhibitory to cancer-promoting mechanism. Cancer Cell 24:242–256

    Article  CAS  PubMed  Google Scholar 

  • Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259

    Article  CAS  PubMed  Google Scholar 

  • Rodier F, Coppé JP, Patil CK et al (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11:973–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage J, Mulligan GJ, Attardi LD et al (2000) Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev 14:3037–3050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage J, Miller AL, Perez-Mancera PA et al (2003) Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424:223–228

    Article  CAS  PubMed  Google Scholar 

  • Samanic C, Gridley G, Chow WH et al (2004) Obesity and cancer risk among white and black United States veterans. Cancer Causes Control 15:35–43

    Article  PubMed  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Blasco MA (2001) Putting the stress on senescence. Curr Opin Cell Biol 13:748–753

    Article  CAS  PubMed  Google Scholar 

  • Shay JW, Pereira-Smith OM, Wright WE (1991) A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 196:33–39

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Depinho RA (2000) Cellular senescence: mitotic clock or culture shock? Cell 102:407–410

    Article  CAS  PubMed  Google Scholar 

  • Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6:447–458

    Article  CAS  PubMed  Google Scholar 

  • Storer M, Mas A, Robert-Moreno A et al (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155:1119–1130

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Imai Y, Yamakoshi K et al (2012) DNA damage signaling triggers degradation of histone methyltransferases through APC/C(Cdh1) in senescent cells. Mol Cell 45:123–131

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Ohtani N, Yamakoshi K et al (2006) Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 8:1291–1297

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi S, Takahashi A, Motoi N et al (2010) Intrinsic cooperation between p16INK4a and p21Waf1/Cip1 in the onset of cellular senescence and tumor suppression in vivo. Cancer Res 70:9381–9390

    Article  CAS  PubMed  Google Scholar 

  • Takuma Y, Nouso K (2010) Nonalcoholic steatohepatitis-associated hepatocellular carcinoma: our case series and literature review. World J Gastroenterol 16:1436–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright WE, Shay JW (2000) Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat Med 6:849–851

    Article  CAS  PubMed  Google Scholar 

  • Yamakoshi K, Takahashi A, Hirota F et al (2009) Real-time in vivo imaging of p16Ink4a reveals cross talk with p53. J Cell Biol 186:393–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto S, Loo TM, Atarashi K et al (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97–101

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Rosen DG, Zhang Z et al (2006) The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc Natl Acad Sci U S A 103:16472–16477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko Ohtani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Ohtani, N. (2016). Cellular Senescence as a Novel Mechanism of Chronic Inflammation and Cancer Progression. In: Miyasaka, M., Takatsu, K. (eds) Chronic Inflammation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56068-5_15

Download citation

Publish with us

Policies and ethics