Skip to main content

Bile Acids and Viral Hepatitis and Hepatocellular Carcinoma

  • Chapter
  • First Online:
Book cover Bile Acids in Gastroenterology

Abstract

Serum total bile acid levels are increased in viral hepatitis and correlate with the degree of liver fibrosis and are also high in hepatocellular carcinoma (HCC). In this chapter, we describe how accumulation of bile acids affects hepatitis viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) and carcinogenesis of HCC. Viral hepatitis: Na+/taurocholate cotransporting polypeptide (NTCP) is an uptake transporter of bile acids and an HBV entry receptor. Several NTCP inhibitors reduce HBV infection. Bile acids promote HBV replication via nuclear receptor transduction. HBV infection increases bile acid synthesis. In patients with high bile acids, interferon therapy shows higher failure rates in chronic hepatitis C. Bile acids increase HCV replication. HCC: Bile acids can induce cell death and inflammation, leading to promotion of carcinogenesis. Bile acid uptake transporters (NTCP and organic anion transporter peptide [OATP]1B3) and bile salt export pump expression are reduced in most cases of HCC. Because OATP1B3 also uptakes gadolinium–ethoxybenzyl–diethylenetriamine pentaacetic acid (Gd–EOB–DTPA), HCC lesions show low signal intensity in the hepatobiliary phase of Gd–EOB–DTPA-enhanced magnetic resonance imaging. Ursodeoxycholic acid (UDCA): UDCA is a hydrophilic bile acid and a safe and effective medical therapy in chronic hepatitis B and C. UDCA improves abnormal liver transaminase levels; however, it cannot eradicate viruses in the liver. UDCA-induced inhibition of DLC1 (deleted in liver cancer 1) protein degradation leads to suppression of HCC cell growth. DLC1 is a tumor suppressor gene for HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shlomai A, Halfon P, Goldiner I, Zelber-Sagi S, Halpern Z, Oren R, et al. Serum bile acid levels as a predictor for the severity of liver fibrosis in patients with chronic hepatitis C. J Viral Hepat. 2013;20(2):95–102. doi:10.1111/j.1365-2893.2012.01628.x.

    Article  CAS  PubMed  Google Scholar 

  2. Chen T, Xie G, Wang X, Fan J, Qiu Y, Zheng X, et al. Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma. Mol Cell Proteomics. 2011;10(7):M110 004945. doi:10.1074/mcp.M110.004945.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM, Daita K, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol. 2013;58(5):949–55. doi:10.1016/j.jhep.2013.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vlahcevic ZR, Buhac I, Bell Jr CC, Swell L. Abnormal metabolism of secondary bile acids in patients with cirrhosis. Gut. 1970;11(5):420–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang X, Xie G, Zhao A, Zheng X, Huang F, Wang Y, et al. Serum bile acids are associated with pathological progression of hepatitis B-induced cirrhosis. J Proteome Res. 2015; doi:10.1021/acs.jproteome.5b00217.

    Google Scholar 

  6. Yin P, Wan D, Zhao C, Chen J, Zhao X, Wang W, et al. A metabonomic study of hepatitis B-induced liver cirrhosis and hepatocellular carcinoma by using RP-LC and HILIC coupled with mass spectrometry. Mol BioSyst. 2009;5(8):868–76. doi:10.1039/b820224a.

    Article  CAS  PubMed  Google Scholar 

  7. Murakami E, Wang T, Park Y, Hao J, Lepist EI, Babusis D, et al. Implications of efficient hepatic delivery by tenofovir alafenamide (GS-7340) for hepatitis B virus therapy. Antimicrob Agents Chemother. 2015;59(6):3563–9. doi:10.1128/AAC.00128-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nassal M. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut. 2015;64(12):1972–84. doi:10.1136/gutjnl-2015-309809.

    Article  CAS  PubMed  Google Scholar 

  9. Xiao F, McKeating JA, Baumert TF. A bile acid transporter as a candidate receptor for hepatitis B and D virus entry. J Hepatol. 2013;58(6):1246–8. doi:10.1016/j.jhep.2013.01.036.

    Article  CAS  PubMed  Google Scholar 

  10. Yan H, Zhong GC, Xu GW, He WH, Jing ZY, Gao ZC et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife. 2012;1. doi:ARTN e000497554/eLife.00049.

    Google Scholar 

  11. Watashi K, Urban S, Li W, Wakita T. NTCP and beyond: opening the door to unveil hepatitis B virus entry. Int J Mol Sci. 2014;15(2):2892–905. doi:10.3390/ijms15022892.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reese VC, Oropeza CE, McLachlan A. Independent activation of hepatitis B virus biosynthesis by retinoids, peroxisome proliferators, and bile acids. J Virol. 2013;87(2):991–7. doi:10.1128/JVI.01562-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramiere C, Scholtes C, Diaz O, Icard V, Perrin-Cocon L, Trabaud MA, et al. Transactivation of the hepatitis B virus core promoter by the nuclear receptor FXRalpha. J Virol. 2008;82(21):10832–40. doi:10.1128/JVI.00883-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Makishima M. Nuclear receptors as targets for drug development: regulation of cholesterol and bile acid metabolism by nuclear receptors. J Pharmacol Sci. 2005;97(2):177–83.

    Article  CAS  PubMed  Google Scholar 

  15. Kim HY, Cho HK, Choi YH, Lee KS, Cheong J. Bile acids increase hepatitis B virus gene expression and inhibit interferon-alpha activity. FEBS J. 2010;277(13):2791–802. doi:10.1111/j.1742-4658.2010.07695.x.

    Article  CAS  PubMed  Google Scholar 

  16. Reese VC, Moore DD, McLachlan A. Limited effects of bile acids and small heterodimer partner on hepatitis B virus biosynthesis in vivo. J Virol. 2012;86(5):2760–8. doi:10.1128/JVI.06742-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oehler N, Volz T, Bhadra OD, Kah J, Allweiss L, Giersch K, et al. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism. Hepatology. 2014;60(5):1483–93. doi:10.1002/hep.27159.

    Article  CAS  PubMed  Google Scholar 

  18. Mohd Hanafiah K, Groeger J, Flaxman AD, Wiersma ST. Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology. 2013;57(4):1333–42. doi:10.1002/hep.26141.

    Article  PubMed  Google Scholar 

  19. Kabiri M, Jazwinski AB, Roberts MS, Schaefer AJ, Chhatwal J. The changing burden of hepatitis C virus infection in the United States: model-based predictions. Ann Intern Med. 2014;161(3):170–80. doi:10.7326/M14-0095.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Graf D, Haselow K, Munks I, Bode JG, Haussinger D. Inhibition of interferon-alpha-induced signaling by hyperosmolarity and hydrophobic bile acids. Biol Chem. 2010;391(10):1175–87. doi:10.1515/BC.2010.108.

    Article  CAS  PubMed  Google Scholar 

  21. Chang KO, George DW. Bile acids promote the expression of hepatitis C virus in replicon-harboring cells. J Virol. 2007;81(18):9633–40. doi:10.1128/JVI.00795-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schupp A-K, Graf D. Bile acid-induced modulation of virus replication. Eur J Med Res. 2014;19(Suppl 1):S27. doi:10.1186/2047-783x-19-s1-s27.

    Article  PubMed Central  Google Scholar 

  23. Chhatwal P, Bankwitz D, Gentzsch J, Frentzen A, Schult P, Lohmann V, et al. Bile acids specifically increase hepatitis C virus RNA-replication. PLoS One. 2012;7(4):e36029. doi:10.1371/journal.pone.0036029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen W, Liu J, Gluud C. Bile acids for viral hepatitis. Cochrane Database Syst Rev. 2007;4:CD003181. doi:10.1002/14651858.CD003181.pub2.

    Google Scholar 

  25. Carreno V. Review article: management of chronic hepatitis C in patients with contraindications to anti-viral therapy. Aliment Pharmacol Ther. 2014;39(2):148–62. doi:10.1111/apt.12562.

    Article  CAS  PubMed  Google Scholar 

  26. Koga Y. Anti-cholestatic and cytoprotective properties of ursodeoxycholic acid Studies in vivo and vitro. Kanzo. 1987;28(12):1597–604. doi:10.2957/kanzo.28.1597.

    Article  CAS  Google Scholar 

  27. Sola S, Amaral JD, Aranha MM, Steer CJ, Rodrigues CM. Modulation of hepatocyte apoptosis: cross-talk between bile acids and nuclear steroid receptors. Curr Med Chem. 2006;13(25):3039–51.

    Article  CAS  PubMed  Google Scholar 

  28. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379(9822):1245–55. doi:10.1016/S0140-6736(11)61347-0.

    Article  PubMed  Google Scholar 

  29. Bruix J, Sherman M. American Association for the Study of Liver D. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2. doi:10.1002/hep.24199.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang W, Zhou L, Yin P, Wang J, Lu X, Wang X, et al. A weighted relative difference accumulation algorithm for dynamic metabolomics data: long-term elevated bile acids are risk factors for hepatocellular carcinoma. Sci Rep. 2015;5:8984. doi:10.1038/srep08984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakayama F, Yanagisawa J, Miyazaki H, Itoh M. Bile-acid composition in primary hepatocellular-carcinoma. J Gastroenterol Hepatol. 1987;2(2):149–58. doi:10.1111/j.1440-1746.1987.tb01613.x.

    Article  CAS  Google Scholar 

  32. Liao M, Zhao J, Wang T, Duan J, Zhang Y, Deng X. Role of bile salt in regulating Mcl-1 phosphorylation and chemoresistance in hepatocellular carcinoma cells. Mol Cancer. 2011;10:44. doi:10.1186/1476-4598-10-44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. El-Mir MY, Badia MD, Luengo N, Monte MJ, Marin JJ. Increased levels of typically fetal bile acid species in patients with hepatocellular carcinoma. Clin Sci (Lond). 2001;100(5):499–508.

    Article  CAS  Google Scholar 

  34. Scheimann AO, Strautnieks SS, Knisely AS, Byrne JA, Thompson RJ, Finegold MJ. Mutations in bile salt export pump (ABCB11) in two children with progressive familial intrahepatic cholestasis and cholangiocarcinoma. J Pediatr. 2007;150(5):556–9. doi:10.1016/j.jpeds.2007.02.030.

    Article  CAS  PubMed  Google Scholar 

  35. Takeyama Y, Sakisaka S. Hepatobiliary membrane transporters in primary biliary cirrhosis. Hepatol Res. 2012;42(2):120–30. doi:10.1111/j.1872-034X.2011.00912.x.

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Song X, Valanejad L, Vasilenko A, More V, Qiu X, et al. Bile salt export pump is dysregulated with altered farnesoid X receptor isoform expression in patients with hepatocellular carcinoma. Hepatology. 2013;57(4):1530–41. doi:10.1002/hep.26187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zollner G, Wagner M, Fickert P, Silbert D, Fuchsbichler A, Zatloukal K, et al. Hepatobiliary transporter expression in human hepatocellular carcinoma. Liver Int. 2005;25(2):367–79. doi:10.1111/j.1478-3231.2005.01033.x.

    Article  CAS  PubMed  Google Scholar 

  38. Katzenellenbogen M, Mizrahi L, Pappo O, Klopstock N, Olam D, Jacob-Hirsch J, et al. Molecular mechanisms of liver carcinogenesis in the mdr2-knockout mice. Mol Cancer Res. 2007;5(11):1159–70. doi:10.1158/1541-7786.MCR-07-0172.

    Article  CAS  PubMed  Google Scholar 

  39. Ueno Y, Moriyama M, Uchida T, Arakawa Y. Irregular regeneration of hepatocytes is an important factor in the hepatocarcinogenesis of liver disease. Hepatology. 2001;33(2):357–62. doi:10.1053/jhep.2001.21902.

    Article  CAS  PubMed  Google Scholar 

  40. Stanimirov B, Stankov K, Mikov M. Bile acid signaling through farnesoid X and TGR5 receptors in hepatobiliary and intestinal diseases. Hepatobiliary Pancreat Dis Int. 2015;14(1):18–33. doi:10.1016/S1499-3872(14)60307-6.

    Article  PubMed  Google Scholar 

  41. Han LY, Fan YC, Mu NN, Gao S, Li F, Ji XF, et al. Aberrant DNA methylation of G-protein-coupled bile acid receptor Gpbar1 (TGR5) is a potential biomarker for hepatitis B virus associated hepatocellular carcinoma. Int J Med Sci. 2014;11(2):164–71. doi:10.7150/ijms.6745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schneller D, Machat G, Sousek A, Proell V, van Zijl F, Zulehner G, et al. p19(ARF)/p14(ARF) controls oncogenic functions of signal transducer and activator of transcription 3 in hepatocellular carcinoma. Hepatology. 2011;54(1):164–72. doi:10.1002/hep.24329.

    Article  CAS  PubMed  Google Scholar 

  43. Calvisi DF. Dr. Jekyll and Mr. Hyde: a paradoxical oncogenic and tumor suppressive role of signal transducer and activator of transcription 3 in liver cancer. Hepatology. 2011;54(1):9–12. doi:10.1002/hep.24435.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou M, Wang X, Phung V, Lindhout DA, Mondal K, Hsu JY, et al. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res. 2014;74(12):3306–16. doi:10.1158/0008-5472.CAN-14-0208.

    Article  CAS  PubMed  Google Scholar 

  45. Narita M, Hatano E, Arizono S, Miyagawa-Hayashino A, Isoda H, Kitamura K, et al. Expression of OATP1B3 determines uptake of Gd-EOB-DTPA in hepatocellular carcinoma. J Gastroenterol. 2009;44(7):793–8. doi:10.1007/s00535-009-0056-4.

    Article  CAS  PubMed  Google Scholar 

  46. Takeyama Y, Tsuchiya N, Kunimoto H, Fukunaga A, Sakurai K, Hirano G, et al. Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging as a useful detection method for advanced primary biliary cirrhosis. Hepatol Res. 2015;45(10):E108–14. doi:10.1111/hepr.12470.

    Article  CAS  PubMed  Google Scholar 

  47. Payne CM, Weber C, Crowley-Skillicorn C, Dvorak K, Bernstein H, Bernstein C, et al. Deoxycholate induces mitochondrial oxidative stress and activates NF-kappaB through multiple mechanisms in HCT-116 colon epithelial cells. Carcinogenesis. 2007;28(1):215–22. doi:10.1093/carcin/bgl139.

    Article  CAS  PubMed  Google Scholar 

  48. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88(1):125–72. doi:10.1152/physrev.00013.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118. doi:10.1146/annurev-pathol-121808-102144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tarao K, Fujiyama S, Ohkawa S, Miyakawa K, Tamai S, Hirokawa S, et al. Ursodiol use is possibly associated with lower incidence of hepatocellular carcinoma in hepatitis C virus-associated liver cirrhosis. Cancer Epidemiol Biomark Prev. 2005;14(1):164–9.

    CAS  Google Scholar 

  51. Oyama K, Shiota G, Ito H, Murawaki Y, Kawasaki H. Reduction of hepatocarcinogenesis by ursodeoxycholic acid in rats. Carcinogenesis. 2002;23(5):885–92.

    Article  CAS  PubMed  Google Scholar 

  52. Chung GE, Yoon JH, Lee JH, Kim HY, Myung SJ, Yu SJ, et al. Ursodeoxycholic acid-induced inhibition of DLC1 protein degradation leads to suppression of hepatocellular carcinoma cell growth. Oncol Rep. 2011;25(6):1739–46. doi:10.3892/or.2011.1239.

    CAS  PubMed  Google Scholar 

  53. Lim SC, Choi JE, Kang HS, Han SI. Ursodeoxycholic acid switches oxaliplatin-induced necrosis to apoptosis by inhibiting reactive oxygen species production and activating p53-caspase 8 pathway in HepG2 hepatocellular carcinoma. Int J Cancer. 2010;126(7):1582–95. doi:10.1002/ijc.24853.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Takeyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Takeyama, Y., Sakisaka, S. (2017). Bile Acids and Viral Hepatitis and Hepatocellular Carcinoma. In: Tazuma, S., Takikawa, H. (eds) Bile Acids in Gastroenterology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56062-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56062-3_11

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56060-9

  • Online ISBN: 978-4-431-56062-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics