Skip to main content

Functional Bio-imaging

  • Chapter
  • First Online:
Cell Therapy Against Cerebral Stroke

Abstract

Cell transplantation therapy has been expected to promote functional recovery in various kinds of central nervous system (CNS) disorders, including cerebral stroke. However, there are several concerns to be resolved before clinical application of cell therapy for CNS disorders. The issues include the development of imaging techniques to monitor the response of the host CNS. It would be essential to establish functional bio-imaging technique serially and noninvasively validating the effects of cell therapy on the host CNS in order to achieve clinical application of cell therapy for cerebral stroke. Nuclear imaging technique is one of the most useful methods to assess the functional change in various kinds of CNS disorders, including cerebral stroke. Very recently, using a small-animal SPECT/CT apparatus, we could serially visualize the effects of BMSC transplantation on the distribution of 123I-IMZ in the infarct brain of the living rodents longitudinally and noninvasively. Furthermore, we serially assessed local glucose metabolism in the rats subjected to permanent MCA occlusion and found that BMSC transplantation significantly enhances the recovery in the peri-infarct area, using small-animal 18F-FDG PET/CT system. The BMSCs may enhance the recovery of local glucose metabolism by improving neuronal integrity in the peri-infarct area, when directly transplanted into the infarct brain. Although there are few studies that indicate the utility of imaging techniques to monitor the response of the host CNS after cell therapy and further investigation is needed, 123I-IMZ SPECT and 18F-FDG PET may be promising modalities to assess the therapeutic benefits of cell therapy for ischemic stroke without subjective bias in clinical situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Savitz SI, Fisher M. Future of neuroprotection for acute stroke: in the aftermath of the SAINT trials. Ann Neurol. 2007;61(5):396–402. Epub 2007/04/11. eng.

    Article  CAS  PubMed  Google Scholar 

  2. Jablonska A, Lukomska B. Stroke induced brain changes: implications for stem cell transplantation. Acta Neurobiol Exp. 2011;71(1):74–85.

    Google Scholar 

  3. Hokari M, Kuroda S, Shichinohe H, Yano S, Hida K, Iwasaki Y. Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms. J Neurosci Res. 2008;86(5):1024–35.

    Article  CAS  PubMed  Google Scholar 

  4. Kawabori M, Kuroda S, Ito M, Shichinohe H, Houkin K, Kuge Y, et al. Timing and cell dose determine therapeutic effects of bone marrow stromal cell transplantation in rat model of cerebral infarct. Neuropathology. 2013;33(2):140–8.

    Article  CAS  PubMed  Google Scholar 

  5. Miyamoto M, Kuroda S, Zhao S, Magota K, Shichinohe H, Houkin K, et al. Bone marrow stromal cell transplantation enhances recovery of local glucose metabolism after cerebral infarction in rats: a serial 18F-FDG PET study. J Nucl Med. 2013;54(1):145–50.

    Article  CAS  PubMed  Google Scholar 

  6. Shichinohe H, Kuroda S, Yano S, Ohnishi T, Tamagami H, Hida K, et al. Improved expression of gamma-aminobutyric acid receptor in mice with cerebral infarct and transplanted bone marrow stromal cells: an autoradiographic and histologic analysis. J Nucl Med. 2006;47(3):486–91.

    CAS  PubMed  Google Scholar 

  7. Sugiyama T, Kuroda S, Takeda Y, Nishio M, Ito M, Shichinohe H, et al. Therapeutic impact of human bone marrow stromal cells expanded by animal serum-free medium for cerebral infarct in rats. Neurosurgery. 2011;68(6):1733–42. discussion 42.

    Article  PubMed  Google Scholar 

  8. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY, et al. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28(6):1099–106.

    Article  PubMed  Google Scholar 

  9. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011;134(Pt 6):1790–807. Pubmed Central PMCID: 3102237.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Savitz SI, Chopp M, Deans R, Carmichael ST, Phinney D, Wechsler L. Stem Cell Therapy as an Emerging Paradigm for Stroke (STEPS) II. Stroke. 2011;42(3):825–9. Epub 2011/01/29. eng.

    Article  PubMed  Google Scholar 

  11. Abe K, Yamashita T, Takizawa S, Kuroda S, Kinouchi H, Kawahara N. Stem cell therapy for cerebral ischemia: from basic science to clinical applications. J Cereb Blood Flow Metab. 2012;32(7):1317–31. Pubmed Central PMCID: 3390814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mori K, Iwata J, Miyazaki M, Nakao Y, Maeda M. Functional recovery of neuronal activity in rat whisker-barrel cortex sensory pathway from freezing injury after transplantation of adult bone marrow stromal cells. J Cereb Blood Flow Metab. 2005;25(7):887–98.

    Article  PubMed  Google Scholar 

  13. Yano S, Kuroda S, Shichinohe H, Seki T, Ohnishi T, Tamagami H, et al. Bone marrow stromal cell transplantation preserves gammaaminobutyric acid receptor function in the injured spinal cord. J Neurotrauma. 2006;23(11):1682–92.

    Article  PubMed  Google Scholar 

  14. Saito H, Magota K, Zhao S, Kubo N, Kuge Y, Shichinohe H, et al. 123I-iomazenil single photon emission computed tomography visualizes recovery of neuronal integrity by bone marrow stromal cell therapy in rat infarct brain. Stroke. 2013;44(10):2869–74.

    Article  PubMed  Google Scholar 

  15. Builinger TF. Functional biomedical imaging. Bridge. 2000;30(1):19–25.

    Google Scholar 

  16. Heiss WD. Radionuclide imaging in ischemic stroke. J Nucl Med. 2014;55(11):1831–41.

    Article  CAS  PubMed  Google Scholar 

  17. Paulson OB. Cerebral apoplexy (stroke): pathogenesis, pathophysiology and therapy as illustrated by regional blood flow measurements in the brain. Stroke. 1971;2(4):327–60.

    Article  CAS  PubMed  Google Scholar 

  18. Heiss WD. Regional cerebral blood flow measurement using a scintillation camera. Clin Nucl Med. 1979;4(9):385–96.

    Article  CAS  PubMed  Google Scholar 

  19. Heiss WD. PET imaging in ischemic cerebrovascular disease: current status and future directions. Neurosci Bull. 2014;30(5):713–32.

    Article  CAS  PubMed  Google Scholar 

  20. Ackerman RH, Correia JA, Alpert NM, Baron JC, Gouliamos A, Grotta JC, et al. Positron imaging in ischemic stroke disease using compounds labeled with oxygen 15. Initial results of clinicophysiologic correlations. Arch Neurol. 1981;38(9):537–43.

    Article  CAS  PubMed  Google Scholar 

  21. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia – the ischemic penumbra. Stroke. 1981;12(6):723–5.

    Article  CAS  PubMed  Google Scholar 

  22. Baron JC. Mapping the ischaemic penumbra with PET: implications for acute stroke treatment. Cerebrovasc Dis. 1999;9(4):193–201.

    Article  CAS  PubMed  Google Scholar 

  23. Baron JC, Bousser MG, Comar D, Soussaline F, Castaigne P. Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur Neurol. 1981;20(3):273–84.

    Article  CAS  PubMed  Google Scholar 

  24. Heiss WD. Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab. 2000;20(9):1276–93.

    Article  CAS  PubMed  Google Scholar 

  25. Heiss WD, Huber M, Fink GR, Herholz K, Pietrzyk U, Wagner R, et al. Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab. 1992;12(2):193–203.

    Article  CAS  PubMed  Google Scholar 

  26. Powers WJ, Zazulia AR. PET in cerebrovascular disease. PET Clin. 2010;5(1):83106. Pubmed Central PMCID: 2883245.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chida K, Ogasawara K, Kuroda H, Aso K, Kobayashi M, Fujiwara S, et al. Central benzodiazepine receptor binding potential and CBF images on SPECT correlate with oxygen extraction fraction images on PET in the cerebral cortex with unilateral major cerebral artery occlusive disease. J Nucl Med. 2011;52(4):511–8.

    Article  CAS  PubMed  Google Scholar 

  28. Guadagno JV, Jones PS, Aigbirhio FI, Wang D, Fryer TD, Day DJ, et al. Selective neuronal loss in rescued penumbra relates to initial hypoperfusion. Brain. 2008;131(Pt 10):2666–78.

    Article  CAS  PubMed  Google Scholar 

  29. Nakagawara J, Sperling B, Lassen NA. Incomplete brain infarction of reperfused cortex may be quantitated with iomazenil. Stroke. 1997;28(1):124–32.

    Article  CAS  PubMed  Google Scholar 

  30. Read SJ, Hirano T, Abbott DF, Sachinidis JI, Tochon-Danguy HJ, Chan JG, et al. Identifying hypoxic tissue after acute ischemic stroke using PET and 18F-fluoromisonidazole. Neurology. 1998;51(6):1617–21.

    Article  CAS  PubMed  Google Scholar 

  31. Markus R, Donnan G, Kazui S, Read S, Reutens D. Penumbral topography in human stroke: methodology and validation of the ‘Penumbragram’. NeuroImage. 2004;21(4):1252–9.

    Article  PubMed  Google Scholar 

  32. Alawneh JA, Moustafa RR, Marrapu ST, Jensen-Kondering U, Morris RS, Jones PS, et al. Diffusion and perfusion correlates of the 18F-MISO PET lesion in acute stroke: pilot study. Eur J Nucl Med Mol Imag. 2014;41(4):736–44.

    Article  CAS  Google Scholar 

  33. Thiel A, Heiss WD. Imaging of microglia activation in stroke. Stroke. 2011;42(2):507–12.

    Article  PubMed  Google Scholar 

  34. Schroeter M, Dennin MA, Walberer M, Backes H, Neumaier B, Fink GR, et al. Neuroinflammation extends brain tissue at risk to vital peri-infarct tissue: a double tracer [11C]PK11195- and [18F]FDG-PET study. J Cereb Blood Flow Metab. 2009;29(6):1216–25.

    Article  CAS  PubMed  Google Scholar 

  35. Weinstein JR, Koerner IP, Moller T. Microglia in ischemic brain injury. Future Neurol. 2010;5(2):227–46. Pubmed Central PMCID: 2853969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gerhard A, Schwarz J, Myers R, Wise R, Banati RB. Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. NeuroImage. 2005;24(2):591–5.

    Article  PubMed  Google Scholar 

  37. Hatazawa J, Satoh T, Shimosegawa E, Okudera T, Inugami A, Ogawa T, et al. Evaluation of cerebral infarction with iodine 123-iomazenil SPECT. J Nucl Med. 1995;36(12):2154–61. Epub 1995/12/01. eng.

    CAS  PubMed  Google Scholar 

  38. Kaji T, Kuge Y, Yokota C, Tagaya M, Inoue H, Shiga T, et al. Characterisation of [123I]iomazenil distribution in a rat model of focal cerebral ischaemia in relation to histopathological findings. Eur J Nucl Med Mol Imag. 2004;31(1):64–70.

    Article  CAS  Google Scholar 

  39. Kuge Y, Hikosaka K, Seki K, Ohkura K, Nishijima KC, Kaji T, et al. Characteristic brain distribution of 1-(14)C-octanoate in a rat model of focal cerebral ischemia in comparison with those of (123)I-IMP and (123)I-iomazenil. J Nucl Med. 2003;44(7):1168–75.

    CAS  PubMed  Google Scholar 

  40. Prohovnik I. Iodine-123-iomazenil SPECT in Alzheimer’s disease. J Nucl Med. 1998;39(5):927.

    CAS  PubMed  Google Scholar 

  41. Saur D, Buchert R, Knab R, Weiller C, Rother J. Iomazenil-single-photon emission computed tomography reveals selective neuronal loss in magnetic resonance-defined mismatch areas. Stroke. 2006;37(11):2713–9.

    Article  PubMed  Google Scholar 

  42. Umeoka S, Matsuda K, Baba K, Usui N, Tottori T, Terada K, et al. Usefulness of 123I-iomazenil single-photon emission computed tomography in discriminating between mesial and lateral temporal lobe epilepsy in patients in whom magnetic resonance imaging demonstrates normal findings. J Neurosurg. 2007;107(2):352–63.

    Article  PubMed  Google Scholar 

  43. Magota K, Kubo N, Kuge Y, Nishijima K, Zhao S, Tamaki N. Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging. Eur J Nucl Med Mol Imag. 2011;38(4):742–52.

    Article  Google Scholar 

  44. Wang J, Chao F, Han F, Zhang G, Xi Q, Li J, et al. PET demonstrates functional recovery after transplantation of induced pluripotent stem cells in a rat model of cerebral ischemic injury. J Nucl Med. 2013;54(5):785–92.

    Article  CAS  PubMed  Google Scholar 

  45. Cross DJ, Minoshima S. Perspectives on assessment of stem cell therapy in stroke by 18F-FDG PET. J Nucl Med. 2013;54(5):668–9.

    Article  CAS  PubMed  Google Scholar 

  46. Du S, Guan J, Mao G, Liu Y, Ma S, Bao X, et al. Intra-arterial delivery of human bone marrow mesenchymal stem cells is a safe and effective way to treat cerebral ischemia in rats. Cell Transplant. 2014;23 Suppl 1:S73–82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisayasu Saito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Saito, H., Miyamoto, M., Shichinohe, H., Houkin, K., Kuroda, S. (2017). Functional Bio-imaging. In: Houkin, K., Abe, K., Kuroda, S. (eds) Cell Therapy Against Cerebral Stroke. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56059-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56059-3_9

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56057-9

  • Online ISBN: 978-4-431-56059-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics