Skip to main content

Intravenous Autologous Bone Marrow Mononuclear Cell Transplantation for Stroke Patients

  • Chapter
  • First Online:
Cell Therapy Against Cerebral Stroke

Abstract

Therapeutic angiogenesis mediated by hematopoietic stem cell transplantation has been initiated in patients with ischemic diseases and has shown promising results. We previously demonstrated that therapeutic angiogenesis is essential for neurogenesis after stroke and that intravenous administration of hematopoietic stem cells improves functional recovery through enhanced angiogenesis in an experimental stroke model. Based on these observations, we initiated a clinical trial of cell therapies with the aim of achieving functional recovery in patients with cerebral ischemia through regenerative microcirculation in the brain following a stroke.

This review summarizes recent findings from basic and clinical research on stroke and introduces our own clinical trial aimed at enhancing functional recovery in stroke patients using bone marrow mononuclear cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearson TA. Cardiovascular disease in developing countries: myths, realities, and opportunities. Cardiovasc Drugs Ther. 1999;13(2):95–104.

    Article  CAS  PubMed  Google Scholar 

  2. Hacke W, Donnan G, Fieschi C, Kaste M, von Kummer R, Broderick JP, et al. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet. 2004;363(9411):768–74. doi:10.1016/S0140-6736(04)15692-4.

    Article  PubMed  Google Scholar 

  3. Bonita R, Solomon N, Broad JB. Prevalence of stroke and stroke-related disability. Estimates from the Auckland stroke studies. Stroke. 1997;28(10):1898–902.

    Article  CAS  PubMed  Google Scholar 

  4. Adams Jr HP, Adams RJ, Brott T, del Zoppo GJ, Furlan A, Goldstein LB, et al. Guidelines for the early management of patients with ischemic stroke: a scientific statement from the Stroke Council of the American Stroke Association. Stroke. 2003;34(4):1056–83. doi:10.1161/01.STR.0000064841.47697.22.

    Article  PubMed  Google Scholar 

  5. Sandercock PA, Soane T. Corticosteroids for acute ischaemic stroke. Cochrane Database Syst Rev. 2011;9:CD000064. doi:10.1002/14651858.CD000064.pub2.

    Google Scholar 

  6. Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology. 2000;55(4):565–9.

    Article  CAS  PubMed  Google Scholar 

  7. Savitz SI, Dinsmore J, Wu J, Henderson GV, Stieg P, Caplan LR. Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis. 2005;20(2):101–7.

    Article  PubMed  Google Scholar 

  8. Duong Van Huyen JP, Smadja DM, Bruneval P, Gaussem P, Dal-Cortivo L, Julia P, et al. Bone marrow-derived mononuclear cell therapy induces distal angiogenesis after local injection in critical leg ischemia. Mod Pathol. 2008;21(7):837–46. doi:modpathol200848 [pii].

    Article  PubMed  Google Scholar 

  9. Tachi Y, Fukui D, Wada Y, Koshikawa M, Shimodaira S, Ikeda U, et al. Changes in angiogenesis-related factors in serum following autologous bone marrow cell implantation for severe limb ischemia. Expert Opin Biol Ther. 2008;8(6):705–12. doi:10.1517/14712598.8.6.705.

    Article  CAS  PubMed  Google Scholar 

  10. Talapkova R, Hudecek J, Sinak I, Kubisz P, Laca L, Hlinka L, et al. The salvage of ischaemic limb by therapeutical angiogenesis. Vnitr Lek. 2009;55(3):179–83.

    CAS  PubMed  Google Scholar 

  11. Padilla L, Krotzsch E, De La Garza AS, Figueroa S, Rodriguez-Trejo J, Avila G, et al. Bone marrow mononuclear cells stimulate angiogenesis when transplanted into surgically induced fibrocollagenous tunnels: results from a canine ischemic hindlimb model. Microsurgery. 2007;27(2):91–7. doi:10.1002/micr.20289.

    Article  PubMed  Google Scholar 

  12. Tatsumi T, Matsubara H. Therapeutic angiogenesis for peripheral arterial disease and ischemic heart disease by autologous bone marrow cells implantation. Nippon Rinsho. 2006;64(11):2126–34.

    PubMed  Google Scholar 

  13. Tse HF, Siu CW, Zhu SG, Songyan L, Zhang QY, Lai WH, et al. Paracrine effects of direct intramyocardial implantation of bone marrow derived cells to enhance neovascularization in chronic ischaemic myocardium. Eur J Heart Fail. 2007;9(8):747–53.

    Article  CAS  PubMed  Google Scholar 

  14. Yokokura Y, Hayashida N, Okazaki T, Nakamura E, Tayama E, Akashi H, et al. Influence of angiogenesis by implantation of bone marrow mononuclear cells in the rat ischemic heart. Kurume Med J. 2007;54(3–4):77–84. doi:JST.JSTAGE/kurumemedj/54.77 [pii].

    PubMed  Google Scholar 

  15. Zen K, Okigaki M, Hosokawa Y, Adachi Y, Nozawa Y, Takamiya M, et al. Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response. J Mol Cell Cardiol. 2006;40(6):799–809. doi:10.1016/j.yjmcc.2006.03.012. doi:S0022-2828(06)00076-9 [pii].

    Article  CAS  PubMed  Google Scholar 

  16. Fan Y, Shen F, Frenzel T, Zhu W, Ye J, Liu J, et al. Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann Neurol. 2010;67(4):488–97. doi:10.1002/ana.21919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taguchi A, Matsuyama T, Moriwaki H, Hayashi T, Hayashida K, Nagatsuka K, et al. Circulating CD34-positive cells provide an index of cerebrovascular function. Circulation. 2004;109(24):2972–5. doi:10.1161/01.CIR.0000133311.25587.DE.

    Article  PubMed  Google Scholar 

  18. Taguchi A, Ohtani M, Soma T, Watanabe M, Kinosita N. Therapeutic angiogenesis by autologous bone-marrow transplantation in a general hospital setting. Eur J Vasc Endovasc Surg. 2003;25(3):276–8.

    Article  CAS  PubMed  Google Scholar 

  19. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360(9331):427–35. doi:S0140-6736(02)09670-8 [pii].

    Article  PubMed  Google Scholar 

  20. Hamano K, Nishida M, Hirata K, Mikamo A, Li TS, Harada M, et al. Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results. Jpn Circ J. 2001;65(9):845–7.

    Article  CAS  PubMed  Google Scholar 

  21. Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest. 2004;114(3):330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taguchi A, Sakai C, Soma T, Kasahara Y, Stern DM, Kajimoto K, et al. Intravenous autologous bone marrow mononuclear cell transplantation for stroke: phase1/2a clinical trial in a homogeneous group of stroke patients. Stem Cells Dev. 2015;24(19):2207–18. doi:10.1089/scd.2015.0160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taguchi A, Nakagomi N, Matsuyama T, Kikuchi-Taura A, Yoshikawa H, Kasahara Y, et al. Circulating CD34-positive cells have prognostic value for neurologic function in patients with past cerebral infarction. J Cereb Blood Flow Metab. 2009;29(1):34–8. doi:10.1038/jcbfm.2008.92.

    Article  PubMed  Google Scholar 

  24. Yoshihara T, Taguchi A, Matsuyama T, Shimizu Y, Kikuchi-Taura A, Soma T, et al. Increase in circulating CD34-positive cells in patients with angiographic evidence of moyamoya-like vessels. J Cereb Blood Flow Metab. 2008;28(6):1086–9.

    Article  CAS  PubMed  Google Scholar 

  25. Nakano-Doi A, Nakagomi T, Fujikawa M, Nakagomi N, Kubo S, Lu S, et al. Bone marrow mononuclear cells promote proliferation of endogenous neural stem cells through vascular niches after cerebral infarction. Stem Cells. 2010;28(7):1292–302. doi:10.1002/stem.454.

    CAS  PubMed  Google Scholar 

  26. Eckert MA, Vu Q, Xie K, Yu J, Liao W, Cramer SC, et al. Evidence for high translational potential of mesenchymal stromal cell therapy to improve recovery from ischemic stroke. J Cereb Blood Flow Metab. 2013;33(9):1322–34. doi:10.1038/jcbfm.2013.91.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012;7(10):e47559. doi:10.1371/journal.pone.0047559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009;69(13):5331–9. doi:10.1158/0008-5472.CAN-08-4630.

    Article  CAS  PubMed  Google Scholar 

  29. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 2009;18(5):683–92. doi:10.1089/scd.2008.0253.

    Article  CAS  PubMed  Google Scholar 

  30. Schabitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Scholzke MN, et al. Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke. 2003;34(3):745–51. doi:10.1161/01.STR.0000057814.70180.17.

    Article  PubMed  Google Scholar 

  31. Gibson CL, Bath PM, Murphy SP. G-CSF reduces infarct volume and improves functional outcome after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 2005;25(4):431–9. doi:10.1038/sj.jcbfm.9600033.

    Article  CAS  PubMed  Google Scholar 

  32. Ringelstein EB, Thijs V, Norrving B, Chamorro A, Aichner F, Grond M, et al. Granulocyte colony-stimulating factor in patients with acute ischemic stroke: results of the AX200 for Ischemic Stroke trial. Stroke. 2013;44(10):2681–7. doi:10.1161/STROKEAHA.113.001531.

    Article  CAS  PubMed  Google Scholar 

  33. Taguchi A, Wen Z, Myojin K, Yoshihara T, Nakagomi T, Nakayama D, et al. Granulocyte colony-stimulating factor has a negative effect on stroke outcome in a murine model. Eur J Neurosci. 2007;26(1):126–33. doi:10.1111/j.1460-9568.2007.05640.x.

    Article  PubMed  Google Scholar 

  34. Nakayama D, Matsuyama T, Ishibashi-Ueda H, Nakagomi T, Kasahara Y, Hirose H, et al. Injury-induced neural stem/progenitor cells in post-stroke human cerebral cortex. Eur J Neurosci. 2010;31(1):90–8.

    Article  PubMed  Google Scholar 

  35. Diederich K, Schmidt A, Beuker C, Strecker JK, Wagner DC, Boltze J, et al. Granulocyte colony-stimulating factor (G-CSF) treatment in combination with transplantation of bone marrow cells is not superior to G-CSF treatment alone after cortical stroke in spontaneously hypertensive rats. Front Cell Neurosci. 2014;8:411. doi:10.3389/fncel.2014.00411.

    PubMed  PubMed Central  Google Scholar 

  36. Uemura M, Kasahara Y, Nagatsuka K, Taguchi A. Cell-based therapy to promote angiogenesis in the brain following ischemic damage. Curr Vasc Pharmacol. 2012;10(3):285–8.

    Article  CAS  PubMed  Google Scholar 

  37. Prasad K, Mohanty S, Bhatia R, Srivastava MV, Garg A, Srivastava A, et al. Autologous intravenous bone marrow mononuclear cell therapy for patients with subacute ischaemic stroke: a pilot study. Indian J Med Res. 2012;136(2):221–8.

    PubMed  PubMed Central  Google Scholar 

  38. Battistella V, de Freitas GR, da Fonseca LM, Mercante D, Gutfilen B, Goldenberg RC, et al. Safety of autologous bone marrow mononuclear cell transplantation in patients with nonacute ischemic stroke. Regen Med. 2011;6(1):45–52. doi:10.2217/rme.10.97.

    Article  CAS  PubMed  Google Scholar 

  39. Friedrich MA, Martins MP, Araujo MD, Klamt C, Vedolin L, Garicochea B, et al. Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transplant. 2012;21 Suppl 1:S13–21. doi:10.3727/096368912X612512.

    Article  PubMed  Google Scholar 

  40. Moniche F, Gonzalez A, Gonzalez-Marcos JR, Carmona M, Pinero P, Espigado I, et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke. 2012;43(8):2242–4. doi:10.1161/STROKEAHA.112.659409.

    Article  PubMed  Google Scholar 

  41. Yang B, Migliati E, Parsha K, Schaar K, Xi X, Aronowski J, et al. Intra-arterial delivery is not superior to intravenous delivery of autologous bone marrow mononuclear cells in acute ischemic stroke. Stroke. 2013;44(12):3463–72. doi:10.1161/STROKEAHA.111.000821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vasconcelos-dos-Santos A, Rosado-de-Castro PH, Lopes de Souza SA, da Costa Silva J, Ramos AB, Rodriguez de Freitas G, et al. Intravenous and intra-arterial administration of bone marrow mononuclear cells after focal cerebral ischemia: is there a difference in biodistribution and efficacy? Stem Cell Res. 2012;9(1):1–8. doi:10.1016/j.scr.2012.02.002.

    Article  PubMed  Google Scholar 

  43. Moniche F, Escudero I, Zapata-Arriaza E, Usero-Ruiz M, Prieto-Leon M, de la Torre J, et al. Intra-arterial bone marrow mononuclear cells (BM-MNCs) transplantation in acute ischemic stroke (IBIS trial): protocol of a phase II, randomized, dose-finding, controlled multicenter trial. Int J Stroke. 2015;10(7):1149–52. doi:10.1111/ijs.12520.

    Article  PubMed  Google Scholar 

  44. Schwarting S, Litwak S, Hao W, Bahr M, Weise J, Neumann H. Hematopoietic stem cells reduce postischemic inflammation and ameliorate ischemic brain injury. Stroke. 2008;39(10):2867–75. doi:10.1161/STROKEAHA.108.513978.

    Article  CAS  PubMed  Google Scholar 

  45. Willing AE, Lixian J, Milliken M, Poulos S, Zigova T, Song S, et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res. 2003;73(3):296–307. doi:10.1002/jnr.10659.

    Article  CAS  PubMed  Google Scholar 

  46. Savitz SI, Misra V, Kasam M, Juneja H, Cox Jr CS, Alderman S, et al. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol. 2011;70(1):59–69. doi:10.1002/ana.22458.

    Article  PubMed  Google Scholar 

  47. Sharma A, Sane H, Gokulchandran N, Khopkar D, Paranjape A, Sundaram J, et al. Autologous bone marrow mononuclear cells intrathecal transplantation in chronic stroke. Stroke Res Treat. 2014;2014:234095. doi:10.1155/2014/234095.

    PubMed  PubMed Central  Google Scholar 

  48. Prasad K, Sharma A, Garg A, Mohanty S, Bhatnagar S, Johri S, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014;45(12):3618–24. doi:10.1161/STROKEAHA.114.007028.

    Article  CAS  PubMed  Google Scholar 

  49. Gladstone DJ, Danells CJ, Black SE. The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16(3):232–40.

    Article  PubMed  Google Scholar 

  50. Park CH, Chang WH, Ohn SH, Kim ST, Bang OY, Pascual-Leone A, et al. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke. 2011;42(5):1357–62. doi:10.1161/STROKEAHA.110.596155.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Amann B, Luedemann C, Ratei R, Schmidt-Lucke JA. Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant. 2009;18(3):371–80.

    Article  PubMed  Google Scholar 

  52. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain J Neurol. 2011;134(Pt 6):1790–807. doi:10.1093/brain/awr063.

    Article  Google Scholar 

  53. Hess DC, Sila CA, Furlan AJ, Wechsler LR, Switzer JA, Mays RW. A double-blind placebo-controlled clinical evaluation of MultiStem for the treatment of ischemic stroke. Int J Stroke. 2014;9(3):381–6. doi:10.1111/ijs.12065.

    Article  PubMed  Google Scholar 

  54. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35–43. doi:10.1159/000339613.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Taguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Kasahara, Y., Matsuyama, T., Taguchi, A. (2017). Intravenous Autologous Bone Marrow Mononuclear Cell Transplantation for Stroke Patients. In: Houkin, K., Abe, K., Kuroda, S. (eds) Cell Therapy Against Cerebral Stroke. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56059-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56059-3_11

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56057-9

  • Online ISBN: 978-4-431-56059-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics